An Emprical Evaluation
of

A | ternatives .

for

__.l. ; FE
o 8
la pEE
Bl - e R) A ol i -
¢ N # A N’ -
o R ’ - Eh
i R : i
'I i - = T
i) '1*

-F|I|p Pizlo, Jan \l/?evk
Purdue gnlverSILy
— West La s,crrv, INp JJ/—

S

Motivation

® Real Time Java programmers are forced
to choose between two memory
management styles:

® Scoped Memory
® Real Time Garbage Collection

e To date, no direct performance
comparison exists.

p

Contribution

e \We present the first open-source
implementation of both scoped memory
and RTGC in one VM

e A discussion of software engineering
benefits and dangers of scoped memory
versus RTGC

e An empirical performance evaluation
using two realistic Real Time Java
applications

Talk Overview

Summary of Scoped Memory
Summary of RTGC (Metronome Style)
Software Engineering Issues

Evaluation

Scoped Memory

Immortal

o o O

Scope A A ‘
© ®

° . I o O

Scope B Scope C

Heap
O

Scoped Memory

Immortal

O ® O
Scope A . ‘
. O
Parent Relation $
o o O

Scope B Scope C

Heap
O

Scoped Memory

T read B
Threa mmortal

Threads

create the

scope Scope " ‘ 16D
hierarchy as

they enter

scopes. q‘ °

Scope B Scope C

Scoped Memory

Immortal

@
-
O
valid Res=— /2 N\

O Q” O

Q a—
Scope B

O

‘ Heap

O

O
O

Scope C

Scoped Memory

Immortal

Scope B Scope C

Scoped Memory

Thread B
Thread A |\, mortal

Objects in O ® O
scopes are \
freed when ~ SCOPE .\ Heap
the scope is o .
exited. o

\\

O O
O O

Scope B

Scope C

|10

Scoped Memory

T read B
Threa mmortal

Objects in
scopes are

freed when ~ SCOpE - Heap
the scope is

exited.
O
Scope B

Scope C

Scoped Memory

Immortal

Scope B Scope C

Scoped Memory

¢ \What we wanted: avoidance of GC interruptions.
¢ \What scoped memory gives us:

® Mostly-safe, somewhat-manual memory
management

e To avoid GC interruptions we add no-heap
threads:

® A no-heap thread cannot have references to the
heap.

13

Scoped Memory Example

myScope = new LTMemory(65536, 65536)

myAction = new Runnable() {
public void run() {
new Obiject(); // allocated in scope
// deallocated after we exit the scope

j

5,

// run myAction In myScope
myScope.enter(myAction)

| 4

Scoped Memory Summary

e Threads enter/exit scopes following a stack
discipline

® Objects deleted when scope exited
® Dynamic checks:
o Write Checks: prevent dangling pointers

® Read Checks: prevent no-heap threads from
accessing the heap.

|5

RTGC (The Metronome Way)

T1 S B -
T2 il il -
T3 N wll e

RTGC (The Metronome Way)

1) Control collector interruptions:

GC—BRRRRERERRERERRRRRERRR R R R R
T H- H— re

2 Hi H H—HH

T3 H— F H—

(collector interruptions ~ 1ms)

2) Insure that collector methods used by mutator
are highly predictable (worst case ~ best case)

|7

RTGC Implementation

® “Insure that collector methods used by
mutator are highly predictable (worst case
~ best case)”

® We go to some trouble to make sure that
the following are predictable:

® \\\/rite Barrier

e Allocation

18

Write Barrier
e \What it is:

Aémall piece of code inserted by the compiler at
every write of a reference to memory. It guarantees
tmat the collector does not lose track of objects.

e \What we need it to do:

Do not exhibit worse performace during
collection than when the collector is idle!

GC Idle i GC Active

>
|

GC
1 — i =

Write Barrier

19

Write Barrier

e |dea: Whatever the worst case is, we
need to simulate it.

e Solution: Our write barrier always
performs at worst case when the GC is

idle.

20

Allocation

e No slow path! Collector ensures that all
free space is accounted for.

e \Worst case: empty freelist, allocate new
page, bump pointer in page

21

Software Engineering
Issues

We now consider the software
engineering impact of the two styles of
Real Time Java memory management.

® Scoped Memory

e Real-Time Garbage Collection

22

Scoped Memory

Pros Cons
Fast Alloc Read Checks
Fast Free Write Checks

Fail-Fast Not Automatic

23

RTGC

Pros Cons

Safe. | Overhead

Performance

e Methodology

o i = e J B F g - % HA = i el ':-'\-__ i
AN

L A - b T N § R L

Methodology

® \We use the OpenVM virtual machine
and the J2c ahead-of-time compiler.

e Our platform is an Pentium IV with
512MB RAM running Linux 2.6.

e Memory Management:
® Java-GC (mostly-copying, semi-space)
® Java-GC + Scopes

o RTGC

26

Performance

e Methodology

o i = e J B] S b o L - % HA = L e -

'-'__r",_ﬁ..'l:--':-".r— - o o ko ___

i
] et
: :"* ..'_1'.' .

RTGC Overhead

® \We use the industry standard SPECjvm98
benchmark suite.

® Three collectors:
e Java-GC
e RTGC w/o write barriers

e RTGC

28

Exec. Time as Percent of Java-GC

140 -
120

100

(@))
o

N
o

SPEC Performance

oo
o
T ‘ T T

N
o
T ‘ T T

compress

jess

T Java-GC
32% overhead TGO (NoBar)
RTGC
7% overhead ™

db javac mpegaudio mitrt jack Geo. Mean

29

Performance

e Methodology

o i = e J B F g - % HA = i el ':-'\-__ i
AN

L A - b T N § R L

RTZen Performance

e RTZen is a real-time CORBA implementation.

e RTZen uses scoped memory. We run it with and
without scopes.

e We test four memory management configurations:
e Java-GC
o RTGC
® Scopes

e Scopes w/o checks (see paper)

31

Latency (millis)

(@) ~
o o

o)
o
T I T

W
o

N
o
T I T T T T I T T T

N
o
T ‘ T T T

—r
o
T T T T

RTZen Latency v. Time, Java-GC

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

lllllllllllllllllllllllllllll

100 200 300 400 500
Time (secs)

32

Latency (millis)

I~
&

w

N
&

N

—
&)

—h

O
&

RTZen Latency v. Time, RTGC

YYYYYYYYYYYYYYYYYYYYYYYYYYYYY

lllllllllllllllllllllllllllll

100 200 300 400 500
Time (secs)

33

Latency (millis)

Lo
&

N
o

—h
(&)
L —

o
o

RTZen Latency v. Time, Scopes

N w
T I T T T T T T I T T T T

—h
T T

A

‘/2-1 M> " 10.8ms (RTGC is 38% worse)

\1 ./Mms

100 200 300 400 500
Time (secs)

34

600

Performance

e Methodology

o i = e J B F g - % HA = i el ':-'\-__ i
AN

L A - b T N § R L

CD Latency v. lteration, Java-GC
20 T

100 ©

Latency (millis)
(@) (00
o o

N
o

———114ms

N
o
T T T T T

W W W W e Wa Wi W | A Wt Wan WA WL W Wog Y,

50 100

150 200 250
lteration Number

36

Latency (millis)

25

N
o
T T T

—h —h
o &)
T T T T T T T T T T

&)
T T T T T

CD Latency v. Iteration, RTGC

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Latency (millis)

CD Latency v. lteration, Scopes

25

20

/1 Oms
Vil

100

—h

—l
o

On
I T T T

i

8ms (RTGC 1s 80% worse)

4ms

50

150 200 250
lteration Number

38

300

Conclusion

e In RTGC, raw throughput suffers only 7% for
SPECjvm98 (though it is 32% worse in the jess
benchmark).

® RTGC has between 38% (RTZen) and 80% (CD)
worse latency in the worst case.

® Your Mileage May Vary, but:
e |f you can tolerate the overhead, RTGC is easier.
® Scopes are still best if your specification is tight.

® Read the paper for a more in-depth evaluation!

39

