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Motivation

® Real Time Java programmers are forced
to choose between two memory
management styles:

® Scoped Memory
® Real Time Garbage Collection

e To date, no direct performance
comparison exists.
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Contribution

e \We present the first open-source
implementation of both scoped memory
and RTGC in one VM

e A discussion of software engineering
benefits and dangers of scoped memory
versus RTGC

e An empirical performance evaluation
using two realistic Real Time Java
applications
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Scoped Memory
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Scoped Memory

¢ \What we wanted: avoidance of GC interruptions.
¢ \What scoped memory gives us:

® Mostly-safe, somewhat-manual memory
management

e To avoid GC interruptions we add no-heap
threads:

® A no-heap thread cannot have references to the
heap.
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Scoped Memory Example

myScope = new LTMemory(65536, 65536)

myAction = new Runnable() {
public void run() {
new Obiject(); // allocated in scope
// deallocated after we exit the scope

j

5,

// run myAction In myScope
myScope.enter( myAction )
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Scoped Memory Summary

e Threads enter/exit scopes following a stack
discipline

® Objects deleted when scope exited
® Dynamic checks:
o Write Checks: prevent dangling pointers

® Read Checks: prevent no-heap threads from
accessing the heap.
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RTGC (The Metronome Way)
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RTGC (The Metronome Way)

1) Control collector interruptions:

GC—BRRRRERERRERERRRRRERRR R R R R
T H- H— re

2 Hi H H—HH

T3 H— F H—

(collector interruptions ~ 1ms)

2) Insure that collector methods used by mutator
are highly predictable (worst case ~ best case)
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RTGC Implementation

® “Insure that collector methods used by
mutator are highly predictable (worst case
~ best case)”

® We go to some trouble to make sure that
the following are predictable:

® \\\/rite Barrier

e Allocation
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Write Barrier
e \What it is:

Aémall piece of code inserted by the compiler at
every write of a reference to memory. It guarantees
tmat the collector does not lose track of objects.

e \What we need it to do:

Do not exhibit worse performace during
collection than when the collector is idle!

GC Idle i GC Active

>
|

GC
1 — i =

Write Barrier
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Write Barrier

e |dea: Whatever the worst case is, we
need to simulate it.

e Solution: Our write barrier always
performs at worst case when the GC is

idle.
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Allocation

e No slow path! Collector ensures that all
free space is accounted for.

e \Worst case: empty freelist, allocate new
page, bump pointer in page
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Software Engineering
Issues

We now consider the software
engineering impact of the two styles of
Real Time Java memory management.

® Scoped Memory

e Real-Time Garbage Collection
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Scoped Memory

Pros Cons
Fast Alloc Read Checks
Fast Free Write Checks

Fail-Fast Not Automatic
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RTGC

Pros Cons

Safe. | Overhead
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Methodology

® \We use the OpenVM virtual machine
and the J2c ahead-of-time compiler.

e Our platform is an Pentium IV with
512MB RAM running Linux 2.6.

e Memory Management:
® Java-GC (mostly-copying, semi-space)
® Java-GC + Scopes

o RTGC
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RTGC Overhead

® \We use the industry standard SPECjvm98
benchmark suite.

® Three collectors:
e Java-GC
e RTGC w/o write barriers

e RTGC
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Exec. Time as Percent of Java-GC
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RTZen Performance

e RTZen is a real-time CORBA implementation.

e RTZen uses scoped memory. We run it with and
without scopes.

e We test four memory management configurations:
e Java-GC
o RTGC
® Scopes

e Scopes w/o checks (see paper)
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Latency (millis)

Lo
&

N
o

—h
(&)
L —

o
o

RTZen Latency v. Time, Scopes

N w
T I T T T T T T I T T T T

—h
T T

A

‘/2-1 M> " 10.8ms (RTGC is 38% worse)

\1 ./Mms

100 200 300 400 500
Time (secs)

34

600



Performance

e Methodology

o i = e J B F g - % HA = i el ':-'\-__ i
AN

L A - b T N § R L




CD Latency v. lteration, Java-GC
20 T

100 ©

Latency (millis)
(@) (00
o o

N
o

———114ms

N
o
T T T T T

W W W W e Wa Wi W | A Wt Wan WA WL W Wog Y,

50 100

150 200 250
lteration Number

36




Latency (millis)

25

N
o
T T T

—h —h
o &)
T T T T T T T T T T

&)
T T T T T

CD Latency v. Iteration, RTGC

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx




Latency (millis)

CD Latency v. lteration, Scopes
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Conclusion

e In RTGC, raw throughput suffers only 7% for
SPECjvm98 (though it is 32% worse in the jess
benchmark).

® RTGC has between 38% (RTZen) and 80% (CD)
worse latency in the worst case.

® Your Mileage May Vary, but:
e |f you can tolerate the overhead, RTGC is easier.
® Scopes are still best if your specification is tight.

® Read the paper for a more in-depth evaluation!
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