
An Emprical Evaluation
of

Memory Management
Alternatives

for

Real Time Java

An Emprical Evaluation
of

Memory Management
Alternatives

for

Real Time Java

RTSSRTSS Dec 2006Dec 2006

Filip Pizlo, Jan Vitek
Purdue University

West Lafayette, IN, USA

Filip Pizlo, Jan Vitek
Purdue University

West Lafayette, IN, USA

2

Motivation

• Real Time Java programmers are forced
to choose between two memory
management styles:

• Scoped Memory

• Real Time Garbage Collection

• To date, no direct performance
comparison exists.

3

Contribution

• We present the first open-source
implementation of both scoped memory
and RTGC in one VM

• A discussion of software engineering
benefits and dangers of scoped memory
versus RTGC*

• An empirical performance evaluation
using two realistic Real Time Java
applications

4

Talk Overview

• Summary of Scoped Memory

• Summary of RTGC (Metronome Style)

• Software Engineering Issues

• Evaluation

5

Scoped Memory

Scope A

Scope B Scope C

Heap

Immortal

6

Scoped Memory

Scope A

Scope B Scope C

Heap

Immortal

Parent Relation

7

Scoped Memory

Scope A

Scope B Scope C

Heap

ImmortalThread A
Thread B

Threads
create the
scope
hierarchy as
they enter
scopes.

8

Scoped Memory

Scope A

Scope B Scope C

Heap

Immortal

Invalid Refs

9

Scoped Memory

Scope A

Scope B Scope C

Heap

Immortal

10

Scoped Memory

Scope A

Scope B Scope C

Heap

ImmortalThread A
Thread B

Objects in
scopes are
freed when
the scope is
exited.

11

Scope A

Scope B Scope C

Heap

Immortal

Scoped Memory
Thread A

Thread B

Objects in
scopes are
freed when
the scope is
exited.

12

Scope A

Scope B Scope C

Heap

Immortal

Scoped Memory

13

Scoped Memory

• What we wanted: avoidance of GC interruptions.

• What scoped memory gives us:

• Mostly-safe, somewhat-manual memory
management

• To avoid GC interruptions we add no-heap
threads:

• A no-heap thread cannot have references to the
heap.

14

myScope = new LTMemory(65536, 65536);

myAction = new Runnable() {
public void run() {
 new Object(); // allocated in scope
 // deallocated after we exit the scope
}

};

// run myAction in myScope
myScope.enter(myAction);

Scoped Memory Example

15

Scoped Memory Summary

• Threads enter/exit scopes following a stack
discipline

• Objects deleted when scope exited

• Dynamic checks:

• Write Checks: prevent dangling pointers

• Read Checks: prevent no-heap threads from
accessing the heap.

16

RTGC (The Metronome Way)

T1

T2

T3

17

1) Control collector interruptions:

 (collector interruptions ~ 1ms)

2) Insure that collector methods used by mutator
are highly predictable (worst case ~ best case)

RTGC (The Metronome Way)

T1

T2

T3

GC

18

RTGC Implementation

• “Insure that collector methods used by
mutator are highly predictable (worst case
~ best case)”

• We go to some trouble to make sure that
the following are predictable:

• Write Barrier

• Allocation

19

Write Barrier

T1

GC

Write Barrier

GC Idle GC Active

• What it is:

•
•
• What we need it to do:

A small piece of code inserted by the compiler at
every write of a reference to memory. It guarantees

that the collector does not lose track of objects.

Do not exhibit worse performace during
collection than when the collector is idle!

20

Write Barrier

• Idea: Whatever the worst case is, we
need to simulate it.

• Solution: Our write barrier always
performs at worst case when the GC is
idle.

21

Allocation

• No slow path! Collector ensures that all
free space is accounted for.

• Worst case: empty freelist, allocate new
page, bump pointer in page

22

Software Engineering
Issues

• Scoped Memory

• Real-Time Garbage Collection

We now consider the software
engineering impact of the two styles of
Real Time Java memory management.

23

Scoped Memory

Pros Cons

Fail-Fast

Fast Alloc
Fast Free

Read Checks
Write Checks
Not Automatic

24

RTGC

Pros Cons

Safe
Automatic

Overhead
Analysis Burden

25

Performance

• Methodology

• RTGC Overhead

• RTZen Performance

• CD Performance

26

Methodology
• We use the OpenVM virtual machine

and the J2c ahead-of-time compiler.

• Our platform is an Pentium IV with
512MB RAM running Linux 2.6.

• Memory Management:

• Java-GC (mostly-copying, semi-space)

• Java-GC + Scopes

• RTGC

27

Performance

• Methodology

• RTGC Overhead

• RTZen Performance

• CD Performance

28

RTGC Overhead

• We use the industry standard SPECjvm98
benchmark suite.

• Three collectors:

• Java-GC

• RTGC w/o write barriers

• RTGC

29

which the object would have been allocated if the program
was running in scoped memory. This allows us to achieve
a complete semantic illusion of scoped memory support,
while submitting the application to the performance impact
of garbage collection.

All real-time benchmarks were run on a Pentium IV
1600 MHz with 512 MB of RAM, running Linux 2.6.14.
We compiled with GCC 3.4.4.

5.2. Application Throughput

We use the industry standard SpecJVM98 benchmark suite
to estimate the impact of RTGC on throughput. Results are
reported for the second run with the -s100 option and a fixed
heap size of 256MB.

Fig. 4 is normalized to Ovm’s Java-GC algorithm. The
difference is the overhead of using a real-time collec-
tor. RTGC-NoBar indicates the cost of real-time collection
without write barriers and RTGC is the throughput over-
head of the real-time collector. The geometric mean for
RTGC gives a 7% slowdown with a worst case of 32% for
jess. This overhead comes from (a) write barriers, (b) al-
location, and (c) collection as each of these components
has been designed to tradeoff throughput for predictabil-
ity. The cost of write barriers is no more than 11% as
shown by RTGC-NoBar. Several benchmarks, compress,
db and mpegaudio, do not GC, and have little or no over-
head. Thus we conclude that allocation costs are a small
part of the overall costs. We used an allocation pro-
filer on jess to confirm that the 32% overhead is mostly due
to the time spent in the collector.

compress jess db javac mpegaudio mtrt jack Geo. Mean

20

40

60

80

100

120

140

c
e
x
E

.
e

mi
T

s
a

t
n
e
cr

e
P

f
o

a
v
a
J

-
C

G

Java-GC

RTGC HNoBarL

RTGC

pollcheck histos.nb 1

Printed by Mathematica for Students

Figure 4. Throughput overhead of RTGC for SpecJVM98.
We measure the throughput with three Ovm configura-
tions: Java-GC, RTGC with write barriers disabled (RTGC-
NoBar), and RTGC. Results presented are normalized to
Java-GC.

5.3. Comparing RTGC to Scopes
5.3.1. RTZen. We measure RTZen 1.1 running the
DOOM application with one client. The size of the sources
is 202KLoc. Client and server are on the same ma-
chine in single-user mode with almost all services dis-
abled. In all cases, the client VM is the Ovm with scoped
memory. We record the latency of processing a re-
quest in the server; barring VM jitter, this time is ex-
pected to be deterministic. Overall latencies include
three terms: client-side processing, local socket process-
ing in the OS, and server-side processing. Because the
client uses scopes, it exhibits no significant jitter. Fur-
thermore our measurements reveal no significant jitter in
the sockets layer. Hence, any jitter observed is due en-
tirely to the server.

Fig. 6(a) gives the latencies of 600 requests with a mostly
copying collector. As expected there are large outliers, up
to 58ms, due to GC pauses. Fig. 6(b) shows latencies of re-
quests running on a VM with RTGC. The collector is set to
run once every 4ms. Hence for every ms the collector ran,
the application got 3ms. Unfortunately, our implementation
does not always stop after exactly 1ms; thus the worst-case
pause time is 1.8ms (c.f. Fig. 6(e)). This said, the results are
good: the latencies range between 1.4 and 2.9ms and the
difference between the best- and the worst-case latency is
explained by the overhead of a single RTGC. Fig. 6(c) is
the same with scoped memory. The results are nicely pre-
dictable with latencies ranging from 1.7ms to 2.1ms. As the
2.1ms outlier occurs close to startup, we believe it is ei-
ther due to paging in the OS or else some lazy initializa-
tion in RTZen. Finally, Fig. 6(d) is a run without the scoped
memory dynamic checks (read/write barriers) as one could
obtain with static analysis or with the scoped type systems
of [1]. The latencies are lower than before, around 1.6ms.

As mentioned, the RTGC is configured for 75% utiliza-

100 200 300 400 500 600
Time HsecsL

0.2

0.4

0.6

0.8

1

r
ot

at
u

M
n
oit

a
zilit

U

pollcheck histos.nb 1

Printed by Mathematica for Students

Figure 5. Mutator utilization trace for RTGC running the
RTZen benchmark measured over 10ms windows. (100%
indicates the mutator is in full control of the CPU and 0%
that the RTGC ran for the entire 10ms window.)

6

SPEC Performance

7% overhead
32% overhead

30

Performance

• Methodology

• RTGC Overhead

• RTZen Performance

• CD Performance

31

RTZen Performance

• RTZen is a real-time CORBA implementation.

• RTZen uses scoped memory. We run it with and
without scopes.

• We test four memory management configurations:

• Java-GC

• RTGC

• Scopes

• Scopes w/o checks (see paper)

32

RTZen Latency v. Time, Java-GC

100 200 300 400 500 600
Time HsecsL

10

20

30

40

50

60

70

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

58ms

44ms

1.56ms (best)

33

RTZen Latency v. Time, RTGC

100 200 300 400 500 600
Time Hsecs L

0.5

1

1.5

2

2.5

3

3.5

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

1.4ms

2.9ms

1ms

34

RTZen Latency v. Time, Scopes

100 200 300 400 500 600
Time HsecsL

0.5

1

1.5

2

2.5

3

3.5

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

2.1ms

1.7ms

0.8ms (RTGC is 38% worse)

35

Performance

• Methodology

• RTGC Overhead

• RTZen Performance

• CD Performance

36

CD Latency v. Iteration, Java-GC

0 50 100 150 200 250 300
Iteration Number

20

40

60

80

100

120

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

114ms

4ms

37

CD Latency v. Iteration, RTGC

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

18ms

6ms

38

CD Latency v. Iteration, Scopes

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

10ms 8ms (RTGC is 80% worse)

4ms

39

Conclusion
• In RTGC, raw throughput suffers only 7% for

SPECjvm98 (though it is 32% worse in the jess
benchmark).

• RTGC has between 38% (RTZen) and 80% (CD)
worse latency in the worst case.

• Your Mileage May Vary, but:

• If you can tolerate the overhead, RTGC is easier.

• Scopes are still best if your specification is tight.

• Read the paper for a more in-depth evaluation!

