
Schism: Fragmentation-Tolerant
Real-Time Garbage Collection

Fil Pizlo†

Tony Hosking*
Luke Ziarek†

Ethan Blanton†
Peta Maj*

Jan Vitek†*

† *

Friday, June 11, 2010

Why another Real Time Garbage Collector?

Friday, June 11, 2010

Why another Real Time Garbage Collector?

• Real-time programmers want hard bounds on both Space and
Time.

Friday, June 11, 2010

Why another Real Time Garbage Collector?

• Real-time programmers want hard bounds on both Space and
Time.

• Previous RTGCs either:

• Fail to bound space, or

Friday, June 11, 2010

Why another Real Time Garbage Collector?

• Real-time programmers want hard bounds on both Space and
Time.

• Previous RTGCs either:

• Fail to bound space, or

• Cause large slow-downs.

Friday, June 11, 2010

Why another Real Time Garbage Collector?

• Real-time programmers want hard bounds on both Space and
Time.

• Previous RTGCs either:

• Fail to bound space, or

• Cause large slow-downs.

• We propose a new RTGC called Schism, which

• bounds space while

Friday, June 11, 2010

Why another Real Time Garbage Collector?

• Real-time programmers want hard bounds on both Space and
Time.

• Previous RTGCs either:

• Fail to bound space, or

• Cause large slow-downs.

• We propose a new RTGC called Schism, which

• bounds space while

• running faster than other RTGCs.

Friday, June 11, 2010

What Schism Real-Time GC provides:

Friday, June 11, 2010

What Schism Real-Time GC provides:

•executes concurrently

•guarantees progress for heap accesses

•minimizes heap access overhead

•gives uniformly good throughput

•minimizes external fragmentation

Friday, June 11, 2010

What Schism Real-Time GC provides:

•executes concurrently

•guarantees progress for heap accesses

•minimizes heap access overhead

•gives uniformly good throughput

•minimizes external fragmentation

preemptible at any time

Friday, June 11, 2010

What Schism Real-Time GC provides:

•executes concurrently

•guarantees progress for heap accesses

•minimizes heap access overhead

•gives uniformly good throughput

•minimizes external fragmentation

preemptible at any time

wait-free

Friday, June 11, 2010

What Schism Real-Time GC provides:

•executes concurrently

•guarantees progress for heap accesses

•minimizes heap access overhead

•gives uniformly good throughput

•minimizes external fragmentation

preemptible at any time

wait-free

O(1), a few instructions

Friday, June 11, 2010

What Schism Real-Time GC provides:

•executes concurrently

•guarantees progress for heap accesses

•minimizes heap access overhead

•gives uniformly good throughput

•minimizes external fragmentation

preemptible at any time

wait-free

O(1), a few instructions

fastest RTGC

Friday, June 11, 2010

What Schism Real-Time GC provides:

•executes concurrently

•guarantees progress for heap accesses

•minimizes heap access overhead

•gives uniformly good throughput

•minimizes external fragmentation

preemptible at any time

wait-free

O(1), a few instructions

fastest RTGC

proven space bounds
(see appendix)

Friday, June 11, 2010

Real Time Garbage Collection: state of the art

Friday, June 11, 2010

Real Time Garbage Collection: state of the art

• Baseline: HotSpot 1.6 collector: Fast, hard space bounds.

Friday, June 11, 2010

Real Time Garbage Collection: state of the art

• Baseline: HotSpot 1.6 collector: Fast, hard space bounds.

• but: not concurrent, not suitable for hard real-time

Friday, June 11, 2010

Real Time Garbage Collection: state of the art

• Baseline: HotSpot 1.6 collector: Fast, hard space bounds.

• but: not concurrent, not suitable for hard real-time

• Java RTS: hard space bounds, concurrent, wait-free.

Friday, June 11, 2010

Real Time Garbage Collection: state of the art

• Baseline: HotSpot 1.6 collector: Fast, hard space bounds.

• but: not concurrent, not suitable for hard real-time

• Java RTS: hard space bounds, concurrent, wait-free.

• but: 60% slow-down, logarithmic heap access

Friday, June 11, 2010

Real Time Garbage Collection: state of the art

• Baseline: HotSpot 1.6 collector: Fast, hard space bounds.

• but: not concurrent, not suitable for hard real-time

• Java RTS: hard space bounds, concurrent, wait-free.

• but: 60% slow-down, logarithmic heap access

• J9 SRT (Metronome): only 30% slow-down, concurrent, wait-
free.

Friday, June 11, 2010

Real Time Garbage Collection: state of the art

• Baseline: HotSpot 1.6 collector: Fast, hard space bounds.

• but: not concurrent, not suitable for hard real-time

• Java RTS: hard space bounds, concurrent, wait-free.

• but: 60% slow-down, logarithmic heap access

• J9 SRT (Metronome): only 30% slow-down, concurrent, wait-
free.

• but: susceptible to fragmentation

Friday, June 11, 2010

Real Time Garbage Collection: state of the art

• Baseline: HotSpot 1.6 collector: Fast, hard space bounds.

• but: not concurrent, not suitable for hard real-time

• Java RTS: hard space bounds, concurrent, wait-free.

• but: 60% slow-down, logarithmic heap access

• J9 SRT (Metronome): only 30% slow-down, concurrent, wait-
free.

• but: susceptible to fragmentation

We want something as fast as Metronome, but
fragmentation-tolerant like Java RTS.

Friday, June 11, 2010

Previous Approaches to Minimizing
Fragmentation in RTGC

Friday, June 11, 2010

On-demand Defragmentation

Friday, June 11, 2010

On-demand Defragmentation

• Stop-the-world or incremental: simple, but causes pauses.

• we don’t want pauses.

Friday, June 11, 2010

On-demand Defragmentation

• Stop-the-world or incremental: simple, but causes pauses.

• we don’t want pauses.

• Concurrent: still has draw-backs

Friday, June 11, 2010

On-demand Defragmentation

• Stop-the-world or incremental: simple, but causes pauses.

• we don’t want pauses.

• Concurrent: still has draw-backs

• Custom hardware? [Click et al ’05]

Friday, June 11, 2010

On-demand Defragmentation

• Stop-the-world or incremental: simple, but causes pauses.

• we don’t want pauses.

• Concurrent: still has draw-backs

• Custom hardware? [Click et al ’05]

• throughput penalty during defrag is 5x or more. [Pizlo et al
’07], [Pizlo et al ’08]

timep
er

fo
rm

an
ce

Defrag
starts

Friday, June 11, 2010

On-demand Defragmentation

• Stop-the-world or incremental: simple, but causes pauses.

• we don’t want pauses.

• Concurrent: still has draw-backs

• Custom hardware? [Click et al ’05]

• throughput penalty during defrag is 5x or more. [Pizlo et al
’07], [Pizlo et al ’08]

timep
er

fo
rm

an
ce

Defrag
starts

Defrag
ends

Friday, June 11, 2010

On-demand Defragmentation

• Stop-the-world or incremental: simple, but causes pauses.

• we don’t want pauses.

• Concurrent: still has draw-backs

• Custom hardware? [Click et al ’05]

• throughput penalty during defrag is 5x or more. [Pizlo et al
’07], [Pizlo et al ’08]

timep
er

fo
rm

an
ce

Defrag
starts

Defrag
ends

Worst-case throughput penalty is too large.

Friday, June 11, 2010

Replication-based GC

Friday, June 11, 2010

Replication-based GC

• See: [Nettles-O’Toole ’93], [Cheng-Blelloch ’01]

• Allows concurrent defragmentation

Friday, June 11, 2010

Replica

Replication-based GC

• See: [Nettles-O’Toole ’93], [Cheng-Blelloch ’01]

• Allows concurrent defragmentation

• Two spaces: one space for reads; writes “replicated” to both
spaces

Original

Application

Friday, June 11, 2010

Replica

Replication-based GC

• See: [Nettles-O’Toole ’93], [Cheng-Blelloch ’01]

• Allows concurrent defragmentation

• Two spaces: one space for reads; writes “replicated” to both
spaces

Original

Application

Read

Friday, June 11, 2010

Replica

Replication-based GC

• See: [Nettles-O’Toole ’93], [Cheng-Blelloch ’01]

• Allows concurrent defragmentation

• Two spaces: one space for reads; writes “replicated” to both
spaces

Original

Application

Read Write

Friday, June 11, 2010

Replica

Replication-based GC

• See: [Nettles-O’Toole ’93], [Cheng-Blelloch ’01]

• Allows concurrent defragmentation

• Two spaces: one space for reads; writes “replicated” to both
spaces

Original Object
Copying

Application

Read Write

Friday, June 11, 2010

Replica

Replication-based GC

• See: [Nettles-O’Toole ’93], [Cheng-Blelloch ’01]

• Allows concurrent defragmentation

• Two spaces: one space for reads; writes “replicated” to both
spaces

• Problem: Writes not atomic! Loss of coherence!

Original Object
Copying

Application

Read Write

Friday, June 11, 2010

Replica

Replication-based GC

• See: [Nettles-O’Toole ’93], [Cheng-Blelloch ’01]

• Allows concurrent defragmentation

• Two spaces: one space for reads; writes “replicated” to both
spaces

• Problem: Writes not atomic! Loss of coherence!

Original Object
Copying

Application

Read Write

Works best for immutable objects.

Friday, June 11, 2010

Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on
object access.

Friday, June 11, 2010

Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on
object access.

Plain Object

Most objects require only
two fragments.

Access cost is known
statically, does not vary.

Friday, June 11, 2010

Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on
object access.

Plain Object

Most objects require only
two fragments.

Access cost is known
statically, does not vary.

Friday, June 11, 2010

Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on
object access.

Array

Array accesses will
see significant slow-
down!

Access cost is
logarithmic.

Friday, June 11, 2010

Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on
object access.

Array

Array accesses will
see significant slow-
down!

Access cost is
logarithmic.

Friday, June 11, 2010

Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on
object access.

Array

Array accesses will
see significant slow-
down!

Bad idea for large arrays.

Access cost is
logarithmic.

Friday, June 11, 2010

Synopsis

•Replication-copying Collection:

•great, but only for immutable objects

•Fragmented Allocation:

•great, unless you have large arrays

Friday, June 11, 2010

Synopsis

•Replication-copying Collection:

•great, but only for immutable objects

•Fragmented Allocation:

•great, unless you have large arrays

Can we combine the two?

Friday, June 11, 2010

Idea:
	 combine Fragmented Allocation
	 with Replication-Copying
	 using Arraylets

Friday, June 11, 2010

A new way of exploiting Arraylets

Friday, June 11, 2010

Arraylet Spine

A new way of exploiting Arraylets

Friday, June 11, 2010

Arraylet Spine

A new way of exploiting Arraylets

Fragments have fixed size - no external
fragmentation

Friday, June 11, 2010

Arraylet Spine

A new way of exploiting Arraylets

Fragments have fixed size - no external
fragmentation

The Arraylet Spine has variable size,
which can lead to fragmentation!

Friday, June 11, 2010

Arraylet Spine

A new way of exploiting Arraylets

But the spine is immutable ...

Fragments have fixed size - no external
fragmentation

Friday, June 11, 2010

Arraylet Spine

A new way of exploiting Arraylets

But the spine is immutable ...

Fragments have fixed size - no external
fragmentation

... and replication is ideal for immutable objects

Friday, June 11, 2010

Schism = arraylets + replication + fragments

•Combination:

•Concurrent mark-sweep GC for fixed-size fragments

•Replication copying for variable-size arraylet spines

•No external fragmentation for either fragments or spines

•Heap access is O(1), wait-free, and coherent.

Friday, June 11, 2010

Friday, June 11, 2010

Concurrent Mark-Sweep Heap for Fragments

To-space for Array
Spines

From-space for Array
Spines

Concurrent Replication Heap for Spines

Friday, June 11, 2010

Concurrent Mark-Sweep Heap for Fragments

To-space for Array
Spines

From-space for Array
Spines

Small Object

Concurrent Replication Heap for Spines

Friday, June 11, 2010

Concurrent Mark-Sweep Heap for Fragments

To-space for Array
Spines

From-space for Array
Spines

Small Object

Large Array?

Concurrent Replication Heap for Spines

Friday, June 11, 2010

Concurrent Mark-Sweep Heap for Fragments

To-space for Array
Spines

From-space for Array
Spines

Small Object

Large Array?

Concurrent Replication Heap for Spines

Friday, June 11, 2010

Concurrent Mark-Sweep Heap for Fragments

To-space for Array
Spines

From-space for Array
Spines

Small Object

Large Array?

Concurrent Replication Heap for Spines

Friday, June 11, 2010

Concurrent Mark-Sweep Heap for Fragments

To-space for Array
Spines

From-space for Array
Spines

Small Object

Large Array?

Concurrent Replication Heap for Spines

Friday, June 11, 2010

Friday, June 11, 2010

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

Henrikkson
’98

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

Kalibera et al
’09

Henrikkson
’98

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

Kalibera et al
’09

Blackburn &
McKinley ’08

Henrikkson
’98

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

Kalibera et al
’09

Doligez, Leroy,
Gonthier ’93, ’94

Blackburn &
McKinley ’08

Henrikkson
’98

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

Puffitsch &
Schoeberl ’08

Kalibera et al
’09

Doligez, Leroy,
Gonthier ’93, ’94

Blackburn &
McKinley ’08

Henrikkson
’98

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

Puffitsch &
Schoeberl ’08

Kalibera et al
’09

Doligez, Leroy,
Gonthier ’93, ’94

Blackburn &
McKinley ’08

Henrikkson
’98

Fiji CMR*

* concurrent mark-
region

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

Puffitsch &
Schoeberl ’08

Kalibera et al
’09

Doligez, Leroy,
Gonthier ’93, ’94

Blackburn &
McKinley ’08

Henrikkson
’98

Fiji CMR*

SCHISM/CMR

* concurrent mark-
region

related work
- or -

how to make a
complete RTGC

Friday, June 11, 2010

Cheng &
Blelloch ’01

Siebert ’99
Schism

Puffitsch &
Schoeberl ’08

Kalibera et al
’09

Doligez, Leroy,
Gonthier ’93, ’94

Blackburn &
McKinley ’08

Henrikkson
’98

Fiji CMR*

SCHISM/CMR

* concurrent mark-
region

related work
- or -

how to make a
complete RTGC

on-the-fly
concurrent

good throughput}
time/space bounds

Friday, June 11, 2010

Tunable throughput-predictability trade-off.

Friday, June 11, 2010

Tunable throughput-predictability trade-off.

•Schism A: completely deterministic:

•arrays allocated fragmented

•Schism C: optimize throughput:

•allocate contiguously if possible

•Schism CW: simulate worst-case execution of Schism C:

•poison all fast-paths (array accesses, write barriers,
allocations)

Friday, June 11, 2010

(very short) Summary of Results

•Goal: as fast as Metronome

•Goal: fragmentation tolerant like Java RTS

•Goal: deterministic

Friday, June 11, 2010

(very short) Summary of Results

•Goal: as fast as Metronome

•Goal: fragmentation tolerant like Java RTS

•Goal: deterministic

Friday, June 11, 2010

SPECjvm98 throughput summary

0%

10%

20%

30%

40%

50%

60%

70%

Java RTS Metronome Schism

Th
ro

ug
hp

ut
(1

00
%

 =
 H

ot
S

po
t)

Friday, June 11, 2010

(very short) Summary of Results

•Goal: as fast as Metronome

•Goal: fragmentation tolerant like Java RTS

•Goal: deterministic

Friday, June 11, 2010

(very short) Summary of Results

•Goal: as fast as Metronome

•Goal: fragmentation tolerant like Java RTS

•Goal: deterministic

✓

Friday, June 11, 2010

Fragger Results

Friday, June 11, 2010

Fragger Results

Friday, June 11, 2010

Fragger Results

Friday, June 11, 2010

Fragger Results

•Amount of free memory successfully allocated under
fragmentation:

•HotSpot: ~100%

•Java RTS: ~80%

•Metronome: ~1%, unless using >10KB objects

•Schism: ~100% (all objects)

Friday, June 11, 2010

(very short) Summary of Results

•Goal: as fast as Metronome

•Goal: fragmentation tolerant like Java RTS

•Goal: deterministic

✓

Friday, June 11, 2010

(very short) Summary of Results

•Goal: as fast as Metronome

•Goal: fragmentation tolerant like Java RTS

•Goal: deterministic

✓
✓

Friday, June 11, 2010

Schism predictability:
RTEMS* on 40MHz LEON3

Friday, June 11, 2010

Schism predictability:
RTEMS* on 40MHz LEON3

* Real Time Executive for Missile Systems
Friday, June 11, 2010

Schism predictability:
RTEMS* on 40MHz LEON3

The OS/hardware platform used for NASA &
ESA space missions.

* Real Time Executive for Missile Systems
Friday, June 11, 2010

Performance baseline: C code.

Friday, June 11, 2010

Performance baseline: C code.

Using both C and Java implementations of
the CDx real-time air traffic collision detection

benchmark [Kalibera et al ’09].

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

Min

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

Max

Min

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

Max

Min
CDx performance varies between
events due to varying number of

predicted collisions.

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

70.5

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

70.5

96.6

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

70.5

96.6 97.2

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

70.5

96.6 97.2

112.5

Schism CW refines the worst-case of
Schism C by accounting for GC

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

70.5

96.6 97.2 98.5

112.5

✓

Schism A is completely deterministic -
no further refinement necessary.

Friday, June 11, 2010

40

60

80

100

120

Java (CMR, Schism) versus C on
CDx real-time benchmark

M
illi

se
co

nd
s

C code Java
Fiji CMR

Java
Schism C

Java
Schism CW

Java
Schism A

70.5

96.6 97.2 98.5

112.5

Java is 40% worse than C
but just as deterministic.

✓

Friday, June 11, 2010

Schism Predictability:
SPECjbb2000 on Linux Xeon

Friday, June 11, 2010

0.001

0.010

0.100

1.000

1 2 3 4 5 6 7 8

Warehouses

Lo
g[

M
illi

se
co

nd
s]

1 2 3 4 5 6 7 8
1

10

100

1000

SPECjbb2000 Worst-case Transaction Times

Friday, June 11, 2010

0.001

0.010

0.100

1.000

1 2 3 4 5 6 7 8

Warehouses

Lo
g[

M
illi

se
co

nd
s]

1 2 3 4 5 6 7 8
1

10

100

1000

CMR & Schism

SPECjbb2000 Worst-case Transaction Times

Friday, June 11, 2010

0.001

0.010

0.100

1.000

1 2 3 4 5 6 7 8

Warehouses

Lo
g[

M
illi

se
co

nd
s]

1 2 3 4 5 6 7 8
1

10

100

1000

CMR & Schism

SPECjbb2000 Worst-case Transaction Times

Friday, June 11, 2010

0.001

0.010

0.100

1.000

1 2 3 4 5 6 7 8

Warehouses

Lo
g[

M
illi

se
co

nd
s]

1 2 3 4 5 6 7 8
1

10

100

1000

CMR & Schism

Metronome

SPECjbb2000 Worst-case Transaction Times

Friday, June 11, 2010

Friday, June 11, 2010

• Additional experiments in the paper:

• SPECjvm98 in detail

• Worst-case-time v. memory for CDx on RTEMS/LEON3

• MMU for CDx on RTEMS/LEON3

• Detailed fragmentation numbers with Fragger

• Array access performance under fragmentation

• Scalability with SPECjbb2000

• Analytical proof of space bounds

• Experimental validation of analytical proof of space bounds

Read the paper for the most awesomely epic
RTGC evaluation, ever.

Friday, June 11, 2010

Conclusion: A good Real-Time GC...

•executes concurrently with mutator threads

•guarantees progress for heap accesses

•wait-free (per-thread progress)

•minimizes heap access overhead

•few instructions

•gives uniformly good throughput

• is space efficient (minimizes external fragmentation)

Friday, June 11, 2010

Conclusion: A good Real-Time GC...

•executes concurrently with mutator threads

•guarantees progress for heap accesses

•wait-free (per-thread progress)

•minimizes heap access overhead

•few instructions

•gives uniformly good throughput

• is space efficient (minimizes external fragmentation)

Friday, June 11, 2010

