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Why another Real Time Garbage Collector?

• Real-time programmers want hard bounds on both Space and 
Time.

• Previous RTGCs either:

• Fail to bound space, or

• Cause large slow-downs.

• We propose a new RTGC called Schism, which

• bounds space while

• running faster than other RTGCs.
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What Schism Real-Time GC provides:

•executes concurrently

•guarantees progress for heap accesses

•minimizes heap access overhead

•gives uniformly good throughput

•minimizes external fragmentation

preemptible at any time

wait-free

O(1), a few instructions

fastest RTGC

proven space bounds
(see appendix)
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Real Time Garbage Collection: state of the art

• Baseline: HotSpot 1.6 collector: Fast, hard space bounds.

• but: not concurrent, not suitable for hard real-time

• Java RTS: hard space bounds, concurrent, wait-free.

• but: 60% slow-down, logarithmic heap access

• J9 SRT (Metronome): only 30% slow-down, concurrent, wait-
free.

• but: susceptible to fragmentation

We want something as fast as Metronome, but 
fragmentation-tolerant like Java RTS.
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Previous Approaches to Minimizing 
Fragmentation in RTGC
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On-demand Defragmentation

• Stop-the-world or incremental: simple, but causes pauses.

• we don’t want pauses.

• Concurrent: still has draw-backs

• Custom hardware? [Click et al ’05]

• throughput penalty during defrag is 5x or more.  [Pizlo et al 
’07], [Pizlo et al ’08]

timep
er

fo
rm

an
ce

Defrag 
starts

Defrag 
ends

Worst-case throughput penalty is too large.
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Replica

Replication-based GC

• See: [Nettles-O’Toole ’93], [Cheng-Blelloch ’01]

• Allows concurrent defragmentation

• Two spaces: one space for reads; writes “replicated” to both 
spaces

• Problem: Writes not atomic!  Loss of coherence!

Original Object 
Copying

Application

Read Write

Works best for immutable objects.
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Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on 
object access.
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Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on 
object access.

Array

Array accesses will 
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Allocate in fragments [Siebert ’99]

•All objects split into small fragments.

•Fragment size is typically fixed at 32 bytes.

•Fragments are linked, application must follow links on 
object access.

Array

Array accesses will 
see significant slow-
down!

Bad idea for large arrays.

Access cost is 
logarithmic.
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Synopsis

•Replication-copying Collection:

•great, but only for immutable objects

•Fragmented Allocation:

•great, unless you have large arrays
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Synopsis

•Replication-copying Collection:

•great, but only for immutable objects

•Fragmented Allocation:

•great, unless you have large arrays

Can we combine the two?
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Idea:
	 combine Fragmented Allocation
	 with Replication-Copying
	 using Arraylets
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Arraylet Spine

A new way of exploiting Arraylets

Fragments have fixed size - no external 
fragmentation

The Arraylet Spine has variable size,
which can lead to fragmentation!
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Arraylet Spine

A new way of exploiting Arraylets

But the spine is immutable ...

Fragments have fixed size - no external 
fragmentation

... and replication is ideal for immutable objects
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Schism = arraylets + replication + fragments

•Combination:

•Concurrent mark-sweep GC for fixed-size fragments

•Replication copying for variable-size arraylet spines

•No external fragmentation for either fragments or spines

•Heap access is O(1), wait-free, and coherent.
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Concurrent Mark-Sweep Heap for Fragments

To-space for Array 
Spines

From-space for Array 
Spines

Concurrent Replication Heap for Spines
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Tunable throughput-predictability trade-off.
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Tunable throughput-predictability trade-off.

•Schism A: completely deterministic:

•arrays allocated fragmented 

•Schism C: optimize throughput:

•allocate contiguously if possible

•Schism CW: simulate worst-case execution of Schism C:

•poison all fast-paths (array accesses, write barriers, 
allocations) 
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SPECjvm98 throughput summary
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✓
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Fragger Results
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Fragger Results

•Amount of free memory successfully allocated under 
fragmentation:

•HotSpot: ~100%

•Java RTS: ~80%

•Metronome: ~1%, unless using >10KB objects

•Schism: ~100% (all objects)
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Schism predictability:
RTEMS* on 40MHz LEON3

Friday, June 11, 2010



Schism predictability:
RTEMS* on 40MHz LEON3

* Real Time Executive for Missile Systems
Friday, June 11, 2010



Schism predictability:
RTEMS* on 40MHz LEON3

The OS/hardware platform used for NASA & 
ESA space missions.

* Real Time Executive for Missile Systems
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Performance baseline: C code.
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Performance baseline: C code.

Using both C and Java implementations of 
the CDx real-time air traffic collision detection 

benchmark [Kalibera et al ’09].
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CDx performance varies between 
events due to varying number of 

predicted collisions.
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Schism CW refines the worst-case of 
Schism C by accounting for GC
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✓

Schism A is completely deterministic - 
no further refinement necessary.
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Java is 40% worse than C
but just as deterministic.
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Schism Predictability:
SPECjbb2000 on Linux Xeon
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• Additional experiments in the paper:

• SPECjvm98 in detail

• Worst-case-time v. memory for CDx on RTEMS/LEON3

• MMU for CDx on RTEMS/LEON3

• Detailed fragmentation numbers with Fragger

• Array access performance under fragmentation

• Scalability with SPECjbb2000

• Analytical proof of space bounds

• Experimental validation of analytical proof of space bounds

Read the paper for the most awesomely epic 
RTGC evaluation, ever.
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Conclusion: A good Real-Time GC...

•executes concurrently with mutator threads

•guarantees progress for heap accesses

•wait-free (per-thread progress)

•minimizes heap access overhead

•few instructions

•gives uniformly good throughput

• is space efficient (minimizes external fragmentation)
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