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Introduction

• RTGC is gaining acceptance as an 
alternative to manual memory management 
for RT applications

• But:

• Multiprocessor support is problematic

• ... especially if defragmentation is 
required.
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• What we deliver:

• Compaction.

• Concurrency.

• Lock freedom.

• Efficiency.
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Why is it hard?

• At some point during 
defragmentation 
there will be two 
copies of the same 
object.

• Then: which version 
of the object should 
the mutator access?

From

To

Mutator

The Heap

?
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Original Object (From) Object Copy (To)

Mutator

Already Copied

But: how do you 
know when to 
switch from the 
original to the to-
space object?
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X
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Original Object (From) Object Copy (To)

Mutator

Already Copied
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X
Immediately after you 
check which version 
of the field to use, the 
copier may advance 
past it.
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• Previous techniques:

• Hudson & Moss ’01, Cheng & Blelloch ‘01

• Stopless (Pizlo et al ‘07)

• Our New Techniques:

• Chicken

• Clover
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• Chicken:

• Really fast

• Does not guarantee that all objects are 
copied

• Clover:

• Probabilistic!

• Guarantees that all objects get copied
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• Both Chicken and Clover are simple to 
implement

• (simpler, we argue, than any previous 
proposed concurrent copying technique).

• Both Chicken and Clover preserve the 
underlying hardware memory model - no 
JMM tricks are necessary.
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Chicken
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• Design Principles:

• Use the cheapest barriers possible.

• Don’t guarantee that objects tagged for 
copying will actually be copied.

• Anytime the mutator writes to an object as 
it is being copied, abort the copying of the 
respective object.
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Use a Brooks-style forwarding pointer
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Use a Brooks-style forwarding pointer

To copy the object, first “tag” the forwarding 
pointer (set a low order bit)
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Use a Brooks-style forwarding pointer

To copy the object, first “tag” the forwarding 
pointer (set a low order bit)

Mutator

The mutator writes by first 
atomically clearing the tag.
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Use a Brooks-style forwarding pointer

To copy the object, first “tag” the forwarding 
pointer (set a low order bit)

Mutator

The mutator writes by first 
atomically clearing the tag.

... and then performing the write
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If the object is already copied, the mutator writes 
to the new object via the forwarding pointer

Mutator
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Write barrier

write(object, offset, value) {
    if object is tagged
        CAS(object.forward, tagged → untagged)
    object.forward[offset] = value
}
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Write barrier

write(object, offset, value) {
    if object is tagged
        CAS(object.forward, tagged → untagged)
    object.forward[offset] = value
}

Clears the tag bit that we stole from the 
Brooks forwarding pointer
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Write barrier

write(object, offset, value) {
    if object is tagged
        CAS(object.forward, tagged → untagged)
    object.forward[offset] = value
}

Clears the tag bit that we stole from the 
Brooks forwarding pointer

Writes to the field via the Brooks 
forwarding pointer
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The collector starts by tagging objects that it 
wishes to copy.
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The collector starts by tagging objects that it 
wishes to copy.

The object is 
then copied.
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The collector starts by tagging objects that it 
wishes to copy.

The object is 
then copied.

To get the mutator to use the 
new object, we atomically 
remove the tag and set the 

forwarding pointer.
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The collector starts by tagging objects that it 
wishes to copy.

The object is 
then copied.

To get the mutator to use the 
new object, we atomically 
remove the tag and set the 

forwarding pointer.

This will fail, if the 
mutator had written 

to the object!
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• Why this is good:

• Read barrier is a wait-free Brooks barrier

• Write barrier is a branch on the fast path, and a 
branch+CAS on the slow path (either way it’s wait-
free)

• Copying is simple and fast

• In practice only ~1% of object copying gets 
aborted.

• Abort rates can be easily reduced (see paper).
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• Things that could be improved:
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• Things that could be improved:

• Eliminate object copy abort entirely.
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• Things that could be improved:

• Eliminate object copy abort entirely.

• Segue into Clover...
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Clover
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• What if each field had a status field that 
indicated, if the field was copied?

• And what if - you could CAS the field’s 
value, as well as the status field, in one 
atomic, lock-free operation?

Clover
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Mutator

Status

Field Not Copied
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Mutator

Status

Field Not Copied

The idea is to allow the mutator to always write 
to the original object, and to have such writes 

force the collector to recopy the field at a later 
time.
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Mutator

Status

Field Not Copied

Atomically

The idea is to allow the mutator to always write 
to the original object, and to have such writes 

force the collector to recopy the field at a later 
time.
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Mutator

Status

Field Copied
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Mutator

Status

Field Copied

If the field is already copied, access to-space.
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Mutator

Status

Field Copied

If the field is already copied, access to-space.
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Collector

Status

Field Not Copied
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Collector

Status

Field Not Copied

Collector repeatedly attempts to copy and assert 
the field as copied until it does so without the 

field’s value changing.
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Collector

Status

Field Not Copied

Collector repeatedly attempts to copy and assert 
the field as copied until it does so without the 

field’s value changing.

Atomically

FIELD COPIED
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Problem: cannot CAS 
two separate fields in 

hardware
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If you could steal a bit 
in the field, this would 

be easy...
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But where do you get 
the bit?

Easy for reference fields - but really hard for integer fields!
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Use a random number!
I.e. we steal 2-128 bits!
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Let R = random bits
R can be huge - it can be the largest CAS-able word - 

128 bits on Intel!
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• The random number is used to mark fields 
as copied.

• This is correct, if the mutator does not use 
R.

• But R is selected at random, independently 
of the program - with R having 128 bits, the 
probability of “failure” is 2-128.
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• Put this in perspective:

• Probability that a person dies from a car 
crash in a single day in the US is higher 
than 1/300,000

• Even if we stored a random value into a 
field once a nanosecond since the Big 
Bang, the probability of ever colliding with 
Clover would be 1/1,000,000,000,000
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So - how does it work?
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Mutator
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Mutator

The mutator writes to the from-space using a 
CAS that asserts that the field is not copied (does 

not equal R).
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Mutator

The mutator writes to the from-space using a 
CAS that asserts that the field is not copied (does 

not equal R).

CAS ¬R→v
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Mutator
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Mutator

If the CAS fails, the mutator just writes to to-
space.
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Mutator

If the CAS fails, the mutator just writes to to-
space.
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Collector
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Collector

Collector repeatedly attempts to copy and assert 
the field as copied until it does so without the 

field’s value changing.
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Collector

Collector repeatedly attempts to copy and assert 
the field as copied until it does so without the 

field’s value changing.
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Collector

Collector repeatedly attempts to copy and assert 
the field as copied until it does so without the 

field’s value changing.

CAS v→R
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• What you just saw is a probabilistically correct 
concurrent copying algorithm.

• But we can:

• Make the algorithm correct but probabilistically 
lock-free by detecting when the user uses R.

34



Implementation
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• Chicken and Clover are implemented in the 
same infrastructure as Stopless (ISMM’07)

• We use the Microsoft Bartok Research 
Compiler, and extend the lock-free 
concurrent mark-sweep collector.

• We use Path Specialization (ISMM’08) to 
optimize barrier performance.
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Results
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• Both schemes have ~20% throughput 
overhead

• Clover leads to a ~3x slow-down when 
executing with full barriers

• Chicken has almost no slow-down.

Summary of Results
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Detail: throughput

• MSR benchmark suite (four internal PL-
type programs written in C#, VB, and C++, 
plus four traditional benchmarks ported 
to .NET)

• Compare concurrent mark-sweep (CMS), 
Stopless (ISMM’07), Chicken, and Clover
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Benchmark Types Methods Instructions Objects Allocated KB Allocated Description

sat 24 260 19,332 8,161,270 171,764 SAT satisfiability program.
lcsc 1,268 6,080 403,976 8,202,479 426,729 A C# front end written in C#.
zing 155 1,088 23,356 12,889,118 928,609 A model-checking tool.
Bartok 1,272 8,987 297,498 434,401,361 11,339,320 The Bartok compiler.
go 362 447 145,803 17,904,648 714,042 The commonly seen Go playing program.
othello 7 20 843 640,647 15,809 The commonly seen Othello program.
xlisp 194 556 18,561 125,487,736 2,012,723 The commonly seen lisp implementation.
crafty 154 340 40,233 1,794,677 217,794 Crafty chess program translated to C#.
JBB 65 506 20,445 501,847,561 54,637,095 JBB ported to C#.

Table 1. Benchmark programs used for performance comparisons.

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

sat lcsc zing Bartok go othello xlisp crafty Geometric 

mean

Execution times relative to non-copying concurrent collector

Stopless5 Clover5 Chicken5

Figure 10. Relative execution times for the non-JBB programs.
The execution times have been normalized to that of the concur-
rent base-line non-copying collector. Higher numbers mean slower
execution.
.

does not, to our knowledge, have this problem, as we were careful
to pick the best C# equivalents for the Java classes used by JBB.
All measurements have been performed on an Intel Supermicro

X7D88 dual x86 quad-core workstation running Microsoft Win-
dows Server 2003 R2 Enterprise x64 Edition at 2.66GHz with
16GB RAM.
We performed measurements for collector configurations where

the object relocation mechanism was activated every 5 garbage col-
lection cycles. For each non-JBB program, each configuration was
run once in sequence, and the sequence was repeated a total of 5
times. The JBB program was only run once for each configuration.
When error bars are present in graphs, they represent a 95% confi-
dence interval.
The memory barriers used by our collectors impose an overhead

on the test programs. To characterize this overhead, we measured
the throughput of the programs with the three different collectors
and compared it to the throughput of a system that reclaims garbage
using the base-line mark-sweep non-compacting concurrent collec-
tor. For the non-JBB programs, the relative execution time numbers
are shown in Figure 10. For the JBB program, the JBB transactions
per second for various numbers of warehouses under various col-
lectors are shown in Figure 11. Typically, the CLOVER collector
generally imposes less overhead than does the STOPLESS collec-
tor, and the CHICKEN collector imposes less overhead than do both
the STOPLESS and CLOVER collectors.

Figure 11. Scalability of JBB for different collectors. Higher num-
bers mean more transactions per second, which indicates better per-
formance.

The STOPLESS, CHICKEN, and CLOVER collectors were all de-
signed to be able to support real-time applications that have re-
quirements of extremely short response times. In other words, the
collectors must exhibit extremely short pause times and allow ap-
plications to remain responsive during any and all garbage collec-
tion phases. To demonstrate this, we repeated the responsiveness
measurements of Pizlo et al. [25]. A test program fires events at
a rate of 108KHz (simulating the frequency of high quality audio
samples) and a computation must end before the next event fires.
The test was run with three different computation tasks and with
varying specified sizes. The IntCopy task copies a specified num-
ber of integer values in an array. The test attempts to copy 256, 128,
or 64 integer values. The RefCopy task copies a specified number
of reference values in an array, invoking the reference write barrier
of a collector. The RefStress task is similar to the RefCopy task,
but the program has another thread that repeatedly allocates (and
releases) a 400MB data structure involving over a million objects.
The measurement results for all three collectors as well as for

the non-copying base-line collector are shown in Table 2. As ex-
pected, the two new collectors CHICKEN and CLOVER perform bet-
ter than the previous STOPLESS collector. The non-copying collec-
tor is performing best as expected, but CHICKEN is able to consis-
tently handle the copying of 256 reference values at a frequency of
108KHz, even in the presence of high rate concurrent allocations.
The STOPLESS and CLOVER collectors are unable to consistently
complete this task at such high rate when concurrent stressing allo-
cations are run, because of their heavier barriers. However, they are
able to consistently complete the smaller task of copying 64 values.
The Windows Server operating system, on which we implemented
our collectors, is not a real-time operating system, and we ran our
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Detail: scalability

• SpecJBB2000 ported to C# using the 
Microsoft Visual Studio Java to C# 
converter

• Compare CMS, Stopless, Clover, and 
Chicken
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Detail: responsiveness

• Two benchmarls:

• Microbenchmark measuring 
responsiveness for short-running 
interrupt handlers

• Our JBB port (measure transaction time 
distribution)
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• For the Interrupt Microbenchmark we 
measure:

• concurrent mark-sweep (see paper)

• Stopless (see paper)

• Clover

• Chicken
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Interrupts: Clover
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Interrupts: Clover
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Interrupts: Clover
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Interrupts: Clover
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• For JBB we measure:

• stop-the-world mark-sweep (see paper)

• Stopless (see paper)

• Clover

• Chicken

47



JBB: Clover
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JBB: Chicken

Worst case:  1ms
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Summary

• Presented two new concurrent copying 
strategies - one that is very light-weight, 
and another with strong (but probabilistic!) 
guarantees.

• Both are simpler than previous techniques.

• Both provide good throughput and 
responsiveness.
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Questions
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