
Concurrent Copying
Garbage Collection
Filip Pizlo, Erez Petrank, Bjarne Steensgaard

Purdue, Technion/Microsoft, Microsoft

PLDI’08 - Tucson, AZ
1

Introduction

• RTGC is gaining acceptance as an
alternative to manual memory management
for RT applications

• But:

• Multiprocessor support is problematic

• ... especially if defragmentation is
required.

2

• What we deliver:

• Compaction.

• Concurrency.

• Lock freedom.

• Efficiency.

3

Why is it hard?

• At some point during
defragmentation
there will be two
copies of the same
object.

• Then: which version
of the object should
the mutator access?

From

To

Mutator

The Heap

?

4

Original Object (From) Object Copy (To)

Mutator

Field

5

Original Object (From) Object Copy (To)

Mutator

Field

Already Copied

5

Original Object (From) Object Copy (To)

Mutator

Field

Already Copied

5

Original Object (From) Object Copy (To)

Mutator

Already Copied

Field

6

Original Object (From) Object Copy (To)

Mutator

Already Copied

Field

X

6

Original Object (From) Object Copy (To)

Mutator

Already Copied

Field

X

6

Original Object (From) Object Copy (To)

Mutator

Already Copied

But: how do you
know when to
switch from the
original to the to-
space object?

Field

X

6

Original Object (From) Object Copy (To)

Mutator

Already Copied

Field

X
Immediately after you
check which version
of the field to use, the
copier may advance
past it.

6

• Previous techniques:

• Hudson & Moss ’01, Cheng & Blelloch ‘01

• Stopless (Pizlo et al ‘07)

• Our New Techniques:

• Chicken

• Clover

7

• Chicken:

• Really fast

• Does not guarantee that all objects are
copied

• Clover:

• Probabilistic!

• Guarantees that all objects get copied

8

• Both Chicken and Clover are simple to
implement

• (simpler, we argue, than any previous
proposed concurrent copying technique).

• Both Chicken and Clover preserve the
underlying hardware memory model - no
JMM tricks are necessary.

9

Chicken

10

• Design Principles:

• Use the cheapest barriers possible.

• Don’t guarantee that objects tagged for
copying will actually be copied.

• Anytime the mutator writes to an object as
it is being copied, abort the copying of the
respective object.

11

12

Use a Brooks-style forwarding pointer

12

Use a Brooks-style forwarding pointer

To copy the object, first “tag” the forwarding
pointer (set a low order bit)

12

Use a Brooks-style forwarding pointer

To copy the object, first “tag” the forwarding
pointer (set a low order bit)

Mutator

The mutator writes by first
atomically clearing the tag.

12

Use a Brooks-style forwarding pointer

To copy the object, first “tag” the forwarding
pointer (set a low order bit)

Mutator

The mutator writes by first
atomically clearing the tag.

... and then performing the write

12

13

If the object is already copied, the mutator writes
to the new object via the forwarding pointer

Mutator

13

Write barrier

write(object, offset, value) {
 if object is tagged
 CAS(object.forward, tagged → untagged)
 object.forward[offset] = value
}

14

Write barrier

write(object, offset, value) {
 if object is tagged
 CAS(object.forward, tagged → untagged)
 object.forward[offset] = value
}

Clears the tag bit that we stole from the
Brooks forwarding pointer

14

Write barrier

write(object, offset, value) {
 if object is tagged
 CAS(object.forward, tagged → untagged)
 object.forward[offset] = value
}

Clears the tag bit that we stole from the
Brooks forwarding pointer

Writes to the field via the Brooks
forwarding pointer

14

15

The collector starts by tagging objects that it
wishes to copy.

15

The collector starts by tagging objects that it
wishes to copy.

The object is
then copied.

15

The collector starts by tagging objects that it
wishes to copy.

The object is
then copied.

To get the mutator to use the
new object, we atomically
remove the tag and set the

forwarding pointer.

15

The collector starts by tagging objects that it
wishes to copy.

The object is
then copied.

To get the mutator to use the
new object, we atomically
remove the tag and set the

forwarding pointer.

This will fail, if the
mutator had written

to the object!

15

• Why this is good:

• Read barrier is a wait-free Brooks barrier

• Write barrier is a branch on the fast path, and a
branch+CAS on the slow path (either way it’s wait-
free)

• Copying is simple and fast

• In practice only ~1% of object copying gets
aborted.

• Abort rates can be easily reduced (see paper).

16

• Things that could be improved:

17

• Things that could be improved:

• Eliminate object copy abort entirely.

17

• Things that could be improved:

• Eliminate object copy abort entirely.

• Segue into Clover...

17

Clover

18

• What if each field had a status field that
indicated, if the field was copied?

• And what if - you could CAS the field’s
value, as well as the status field, in one
atomic, lock-free operation?

Clover

19

Mutator

Status

Field Not Copied

20

Mutator

Status

Field Not Copied

The idea is to allow the mutator to always write
to the original object, and to have such writes

force the collector to recopy the field at a later
time.

20

Mutator

Status

Field Not Copied

Atomically

The idea is to allow the mutator to always write
to the original object, and to have such writes

force the collector to recopy the field at a later
time.

20

Mutator

Status

Field Copied

21

Mutator

Status

Field Copied

If the field is already copied, access to-space.

21

Mutator

Status

Field Copied

If the field is already copied, access to-space.

21

Collector

Status

Field Not Copied

22

Collector

Status

Field Not Copied

Collector repeatedly attempts to copy and assert
the field as copied until it does so without the

field’s value changing.

22

Collector

Status

Field Not Copied

Collector repeatedly attempts to copy and assert
the field as copied until it does so without the

field’s value changing.

22

Collector

Status

Field Not Copied

Collector repeatedly attempts to copy and assert
the field as copied until it does so without the

field’s value changing.

22

Collector

Status

Field Not Copied

Collector repeatedly attempts to copy and assert
the field as copied until it does so without the

field’s value changing.

Atomically

FIELD COPIED

22

Problem: cannot CAS
two separate fields in

hardware

23

If you could steal a bit
in the field, this would

be easy...

24

But where do you get
the bit?

Easy for reference fields - but really hard for integer fields!

25

Use a random number!
I.e. we steal 2-128 bits!

26

Let R = random bits
R can be huge - it can be the largest CAS-able word -

128 bits on Intel!

27

• The random number is used to mark fields
as copied.

• This is correct, if the mutator does not use
R.

• But R is selected at random, independently
of the program - with R having 128 bits, the
probability of “failure” is 2-128.

28

• Put this in perspective:

• Probability that a person dies from a car
crash in a single day in the US is higher
than 1/300,000

• Even if we stored a random value into a
field once a nanosecond since the Big
Bang, the probability of ever colliding with
Clover would be 1/1,000,000,000,000

29

So - how does it work?

30

Mutator

31

Mutator

The mutator writes to the from-space using a
CAS that asserts that the field is not copied (does

not equal R).

31

Mutator

The mutator writes to the from-space using a
CAS that asserts that the field is not copied (does

not equal R).

CAS ¬R→v

31

Mutator

32

Mutator

If the CAS fails, the mutator just writes to to-
space.

32

Mutator

If the CAS fails, the mutator just writes to to-
space.

32

Collector

33

Collector

Collector repeatedly attempts to copy and assert
the field as copied until it does so without the

field’s value changing.

33

Collector

Collector repeatedly attempts to copy and assert
the field as copied until it does so without the

field’s value changing.

33

Collector

Collector repeatedly attempts to copy and assert
the field as copied until it does so without the

field’s value changing.

33

Collector

Collector repeatedly attempts to copy and assert
the field as copied until it does so without the

field’s value changing.

CAS v→R

33

• What you just saw is a probabilistically correct
concurrent copying algorithm.

• But we can:

• Make the algorithm correct but probabilistically
lock-free by detecting when the user uses R.

34

Implementation

35

• Chicken and Clover are implemented in the
same infrastructure as Stopless (ISMM’07)

• We use the Microsoft Bartok Research
Compiler, and extend the lock-free
concurrent mark-sweep collector.

• We use Path Specialization (ISMM’08) to
optimize barrier performance.

36

Results

37

• Both schemes have ~20% throughput
overhead

• Clover leads to a ~3x slow-down when
executing with full barriers

• Chicken has almost no slow-down.

Summary of Results

38

Detail: throughput

• MSR benchmark suite (four internal PL-
type programs written in C#, VB, and C++,
plus four traditional benchmarks ported
to .NET)

• Compare concurrent mark-sweep (CMS),
Stopless (ISMM’07), Chicken, and Clover

39

Benchmark Types Methods Instructions Objects Allocated KB Allocated Description

sat 24 260 19,332 8,161,270 171,764 SAT satisfiability program.
lcsc 1,268 6,080 403,976 8,202,479 426,729 A C# front end written in C#.
zing 155 1,088 23,356 12,889,118 928,609 A model-checking tool.
Bartok 1,272 8,987 297,498 434,401,361 11,339,320 The Bartok compiler.
go 362 447 145,803 17,904,648 714,042 The commonly seen Go playing program.
othello 7 20 843 640,647 15,809 The commonly seen Othello program.
xlisp 194 556 18,561 125,487,736 2,012,723 The commonly seen lisp implementation.
crafty 154 340 40,233 1,794,677 217,794 Crafty chess program translated to C#.
JBB 65 506 20,445 501,847,561 54,637,095 JBB ported to C#.

Table 1. Benchmark programs used for performance comparisons.

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

sat lcsc zing Bartok go othello xlisp crafty Geometric

mean

Execution times relative to non-copying concurrent collector

Stopless5 Clover5 Chicken5

Figure 10. Relative execution times for the non-JBB programs.
The execution times have been normalized to that of the concur-
rent base-line non-copying collector. Higher numbers mean slower
execution.
.

does not, to our knowledge, have this problem, as we were careful
to pick the best C# equivalents for the Java classes used by JBB.
All measurements have been performed on an Intel Supermicro

X7D88 dual x86 quad-core workstation running Microsoft Win-
dows Server 2003 R2 Enterprise x64 Edition at 2.66GHz with
16GB RAM.
We performed measurements for collector configurations where

the object relocation mechanism was activated every 5 garbage col-
lection cycles. For each non-JBB program, each configuration was
run once in sequence, and the sequence was repeated a total of 5
times. The JBB program was only run once for each configuration.
When error bars are present in graphs, they represent a 95% confi-
dence interval.
The memory barriers used by our collectors impose an overhead

on the test programs. To characterize this overhead, we measured
the throughput of the programs with the three different collectors
and compared it to the throughput of a system that reclaims garbage
using the base-line mark-sweep non-compacting concurrent collec-
tor. For the non-JBB programs, the relative execution time numbers
are shown in Figure 10. For the JBB program, the JBB transactions
per second for various numbers of warehouses under various col-
lectors are shown in Figure 11. Typically, the CLOVER collector
generally imposes less overhead than does the STOPLESS collec-
tor, and the CHICKEN collector imposes less overhead than do both
the STOPLESS and CLOVER collectors.

Figure 11. Scalability of JBB for different collectors. Higher num-
bers mean more transactions per second, which indicates better per-
formance.

The STOPLESS, CHICKEN, and CLOVER collectors were all de-
signed to be able to support real-time applications that have re-
quirements of extremely short response times. In other words, the
collectors must exhibit extremely short pause times and allow ap-
plications to remain responsive during any and all garbage collec-
tion phases. To demonstrate this, we repeated the responsiveness
measurements of Pizlo et al. [25]. A test program fires events at
a rate of 108KHz (simulating the frequency of high quality audio
samples) and a computation must end before the next event fires.
The test was run with three different computation tasks and with
varying specified sizes. The IntCopy task copies a specified num-
ber of integer values in an array. The test attempts to copy 256, 128,
or 64 integer values. The RefCopy task copies a specified number
of reference values in an array, invoking the reference write barrier
of a collector. The RefStress task is similar to the RefCopy task,
but the program has another thread that repeatedly allocates (and
releases) a 400MB data structure involving over a million objects.
The measurement results for all three collectors as well as for

the non-copying base-line collector are shown in Table 2. As ex-
pected, the two new collectors CHICKEN and CLOVER perform bet-
ter than the previous STOPLESS collector. The non-copying collec-
tor is performing best as expected, but CHICKEN is able to consis-
tently handle the copying of 256 reference values at a frequency of
108KHz, even in the presence of high rate concurrent allocations.
The STOPLESS and CLOVER collectors are unable to consistently
complete this task at such high rate when concurrent stressing allo-
cations are run, because of their heavier barriers. However, they are
able to consistently complete the smaller task of copying 64 values.
The Windows Server operating system, on which we implemented
our collectors, is not a real-time operating system, and we ran our

40

Detail: scalability

• SpecJBB2000 ported to C# using the
Microsoft Visual Studio Java to C#
converter

• Compare CMS, Stopless, Clover, and
Chicken

41

Concurrent MS

STOPLESS

CLOVER

CHICKEN

Out[978]=

Ê

Ê

Ê

Ê

Ê

Ê

‡

‡

‡

‡

‡

‡

Ï

Ï

Ï

Ï

Ï

Ï

Ú

Ú

Ú

Ú

Ú

Ú

1 2 3 4 5 6
0

10000

20000

30000

40000

50000

60000

Number of Warehouses

JB
B
T
ra
n
sa
ct
io
n
s
p
er

Se
co

n
d

Printed by Mathematica for Students

42

Detail: responsiveness

• Two benchmarls:

• Microbenchmark measuring
responsiveness for short-running
interrupt handlers

• Our JBB port (measure transaction time
distribution)

43

• For the Interrupt Microbenchmark we
measure:

• concurrent mark-sweep (see paper)

• Stopless (see paper)

• Clover

• Chicken

44

Interrupts: Clover

Out[109]=

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

ÊÊÊÊ
ÊÊ

ÊÊ
Ê
ÊÊ

ÊÊ

0 5 10 15 20

1

100

10
4

10
6

Printed by Mathematica for Students

Microseconds
45

Interrupts: Clover

Out[109]=

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

ÊÊÊÊ
ÊÊ

ÊÊ
Ê
ÊÊ

ÊÊ

0 5 10 15 20

1

100

10
4

10
6

Printed by Mathematica for Students

Microseconds

Clover
outliers

45

Interrupts: Clover

Out[109]=

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

ÊÊÊÊ
ÊÊ

ÊÊ
Ê
ÊÊ

ÊÊ

0 5 10 15 20

1

100

10
4

10
6

Printed by Mathematica for Students

Microseconds

Clover
outliers

OS outliers,
visible in
C code

45

Interrupts: Clover

Out[109]=

Ê

Ê

Ê

Ê
Ê

Ê

Ê

Ê

ÊÊÊÊ
ÊÊ

ÊÊ
Ê
ÊÊ

ÊÊ

0 5 10 15 20

1

100

10
4

10
6

Printed by Mathematica for Students

Microseconds

Clover
outliers

OS outliers,
visible in
C codeOther RTGCs, like Metronome,

would have a large peak well
past the 200 microsecond

mark.

45

Out[110]=

Ê

Ê

Ê

ÊÊÊÊÊÊ
ÊÊ

Ê
Ê
ÊÊÊÊÊ

Ê
Ê
Ê

0 5 10 15 20

1

100

10
4

10
6

Printed by Mathematica for Students

Interrupts: Clover

Microseconds
46

Out[110]=

Ê

Ê

Ê

ÊÊÊÊÊÊ
ÊÊ

Ê
Ê
ÊÊÊÊÊ

Ê
Ê
Ê

0 5 10 15 20

1

100

10
4

10
6

Printed by Mathematica for Students

Interrupts: Clover

Microseconds

Chicken
outlier

46

Out[110]=

Ê

Ê

Ê

ÊÊÊÊÊÊ
ÊÊ

Ê
Ê
ÊÊÊÊÊ

Ê
Ê
Ê

0 5 10 15 20

1

100

10
4

10
6

Printed by Mathematica for Students

Interrupts: Clover

Microseconds

Chicken
outlier

OS outliers,
visible in
C code

46

• For JBB we measure:

• stop-the-world mark-sweep (see paper)

• Stopless (see paper)

• Clover

• Chicken

47

JBB: Clover

Worst case: 3msÊ

Ê

Ê

Ê

0 20 40 60 80

1

10

100

1000

10
4

10
5

10
6

Printed by Mathematica for Students

48

JBB: Chicken

Worst case: 1ms
Ê

Ê

0 20 40 60 80

1

10

100

1000

10
4

10
5

10
6

Printed by Mathematica for Students

49

Summary

• Presented two new concurrent copying
strategies - one that is very light-weight,
and another with strong (but probabilistic!)
guarantees.

• Both are simpler than previous techniques.

• Both provide good throughput and
responsiveness.

50

Questions

51

