
Hierarchical Real Time
Garbage Collection
Filip Pizlo, Antony Hosking, Jan Vitek

(Purdue & MSR, Purdue, Purdue & TJ Watson)

LCTES 2007 San Diego, CA

• Real Time Java (RTJ) is a growing technology for developing
robust, mission-critical, hard real-time systems.

• Real Time Java (RTJ) is a growing technology for developing
robust, mission-critical, hard real-time systems.

• Programming for RTJ is still made hard by memory
management:

• Real Time Java (RTJ) is a growing technology for developing
robust, mission-critical, hard real-time systems.

• Programming for RTJ is still made hard by memory
management:

• Java programmers are accustomed to garbage collection.

• Real Time Java (RTJ) is a growing technology for developing
robust, mission-critical, hard real-time systems.

• Programming for RTJ is still made hard by memory
management:

• Java programmers are accustomed to garbage collection.

• We would like to use real-time garbage collection
(RTGC) - but sometimes performance is not good
enough.

• Real Time Java (RTJ) is a growing technology for developing
robust, mission-critical, hard real-time systems.

• Programming for RTJ is still made hard by memory
management:

• Java programmers are accustomed to garbage collection.

• We would like to use real-time garbage collection
(RTGC) - but sometimes performance is not good
enough.

• Programmers may be forced to use some form of manual
memory management instead (scoped memory, object
pools, eventrons, reflexes).

• RTGC introduction:

• RTGC introduction:

• Real-time garbage collectors are designed to
maintain a predictable schedule, minimize pause
times and maximize utilization.

• RTGC introduction:

• Real-time garbage collectors are designed to
maintain a predictable schedule, minimize pause
times and maximize utilization.

Interruptions from the
collector are part of the

real-time schedule.

• RTGC introduction:

• Real-time garbage collectors are designed to
maintain a predictable schedule, minimize pause
times and maximize utilization.

Following interruption, the time
before the mutator gets to
relinquish control from the
collector should be small.

• RTGC introduction:

• Real-time garbage collectors are designed to
maintain a predictable schedule, minimize pause
times and maximize utilization.

For a given timeslice, the
amount of time that the
mutator is guaranteed to

utilize, is maximized.

• RTGC introduction:

• Real-time garbage collectors are designed to
maintain a predictable schedule, minimize pause
times and maximize utilization.

• RTGCs are not primarily designed to maximize
overall application throughput!

• RTGC introduction:

• Real-time garbage collectors are designed to
maintain a predictable schedule, minimize pause
times and maximize utilization.

• RTGCs are not primarily designed to maximize
overall application throughput!

• All RTGCs “interfere” with the mutator by
either actively interrupting it (Metronome) or
requiring it to occasionally yield (Henriksson).

The problem with “normal”
RTGCs.

Non-RT Thread

RT Thread

RTGC Thread

In
cr

ea
sin

g
Pr

io
rit

y

The problem with “normal”
RTGCs.

• The amount of interference
from the RTGC is determined
by the allocation rate of all
threads, and the size of the
whole heap.

Non-RT Thread

RT Thread

RTGC Thread

In
cr

ea
sin

g
Pr

io
rit

y

The problem with “normal”
RTGCs.

• The amount of interference
from the RTGC is determined
by the allocation rate of all
threads, and the size of the
whole heap.

• This leads to a kind of priority
inversion: the heap usage of a
non-real-time task may cause
the GC to interfere with a
real-time task.

Non-RT Thread

RT Thread

RTGC Thread

In
cr

ea
sin

g
Pr

io
rit

y

• This problem affects all styles of RTGC
(time-based, work-based, Henriksson-style).

• It can be easily avoided if the part of the heap
used by the real-time tasks is segregated from
the part used by non-real-time tasks.

Basic Strategy

Non-RT Thread

RT Thread

RTGC Thread

GC Thread

In
cr

ea
sin

g
Pr

io
rit

y
Thread behavior determines
GC schedule

GC thread interferes with
mutator

K
ey

• We segregate the heap into
“heaplets”.

Basic Strategy

Non-RT Thread

RT Thread

RTGC Thread

GC Thread

In
cr

ea
sin

g
Pr

io
rit

y
Thread behavior determines
GC schedule

GC thread interferes with
mutator

K
ey

• We segregate the heap into
“heaplets”.

• Each heaplet gets its own
collector thread.

Basic Strategy

Non-RT Thread

RT Thread

RTGC Thread

GC Thread

In
cr

ea
sin

g
Pr

io
rit

y
Thread behavior determines
GC schedule

GC thread interferes with
mutator

K
ey

• We segregate the heap into
“heaplets”.

• Each heaplet gets its own
collector thread.

• The collector for the non-real-
time heaplets never interferes
with real-time tasks.

Basic Strategy

Non-RT Thread

RT Thread

RTGC Thread

GC Thread

In
cr

ea
sin

g
Pr

io
rit

y
Thread behavior determines
GC schedule

GC thread interferes with
mutator

K
ey

• We segregate the heap into
“heaplets”.

• Each heaplet gets its own
collector thread.

• The collector for the non-real-
time heaplets never interferes
with real-time tasks.

• Thus - real-time code will not be
affected by the footprint and
allocation behavior of the non-
real-time code.

Basic Strategy

Non-RT Thread

RT Thread

RTGC Thread

GC Thread

In
cr

ea
sin

g
Pr

io
rit

y
Thread behavior determines
GC schedule

GC thread interferes with
mutator

K
ey

What are heaplets?

• A “heaplet” is a user-specified heap partition, with a
user-tuned RTGC thread.

• Any thread may use any heaplet for allocation at any
time. The current allocation context is determined
using an RTSJ-like API.

• Any thread may have references to objects in any
heaplet.

• References between heaplets are allowed.

Thread 1 Thread 2 Thread 3 GC Thread

Obj

Obj

Obj

Obj

Obj

Obj
Obj

Obj Obj

Obj

Heap

RTGC Example

Thread 1 Thread 2 Thread 3 GC Thread

Obj

Obj

Obj

Obj

Obj

Obj
Obj

Obj Obj

Obj

Heaplet 1

RTGC with Heaplets Example

Heaplet 2

GC Thread

Thread 1 Thread 2 Thread 3 GC Thread

Obj

Obj

Obj

Obj

Obj

Obj
Obj

Obj Obj

Obj

Heaplet 1

RTGC with Heaplets Example

Heaplet 2

GC Thread

Thread 1 Thread 2 Thread 3 GC Thread

Obj

Obj

Obj

Obj

Obj

Obj
Obj

Obj Obj

Obj

Heaplet 1

RTGC with Heaplets Example

Heaplet 2

GC Thread

References between heaplets unrestricted

Heaplet Hierarchy
• We introduce a heaplet hierarchy to increase the

performance of cross-heaplet references.

• A heaplet collector always scans child heaplets for
references - thus, establishing new “up-hierarchy”
references does not require barriers.

• Others cross-heaplet references are handled
using a barrier and global cross-reference list
(“cross-set”).

• Thus - establishing a cross-reference incurs a
cost in both space and time.

Obj

Obj

ObjObj

ObjObj

Root Heaplet

Heaplet Hierarchy

Obj

Child Heaplet #1

Obj

Obj

Child Heaplet #2

Obj

Obj

ObjObj

ObjObj

Root Heaplet

Heaplet Hierarchy

Obj

Child Heaplet #1

Obj

Obj

Child Heaplet #2

“up-references” are guaranteed fast

Obj

Obj

ObjObj

ObjObj

Root Heaplet

Heaplet Hierarchy

Obj

Child Heaplet #1

Obj

Obj

Child Heaplet #2

“up-references” are guaranteed fast
“cross-references” are allowed, but

come with a penalty

Putting it Together

Putting it Together

• Heap is manually partitioned into heaplets.

Putting it Together

• Heap is manually partitioned into heaplets.

• Heaplets are manually arranged into a hierarchy,
as a hint from the programmer about the likely
directionality of references.

Putting it Together

• Heap is manually partitioned into heaplets.

• Heaplets are manually arranged into a hierarchy,
as a hint from the programmer about the likely
directionality of references.

• Each heaplet gets its own collector, user-tuned
for the allocation and footprint behavior of the
heaplet.

Putting it Together

• Heap is manually partitioned into heaplets.

• Heaplets are manually arranged into a hierarchy,
as a hint from the programmer about the likely
directionality of references.

• Each heaplet gets its own collector, user-tuned
for the allocation and footprint behavior of the
heaplet.

• Introducting heaplets into a correct program does
not make it incorrect.

The HRTGC Algorithm

• Each heaplet gets a Metronome-style mark-sweep
collector.

• Each collector is scheduled like the Metronome - but
with control of schedules extended to include
phasing.

• Cycles of cross-heaplet references are handled using a
global cycle collector. Because garbage cycles are
rare, the cycle collector runs at a very low rate - in
fact it runs at a zero rate in our benchmarks.

Implementation
and

Evaluation

• We use the OpenVM RTJVM and J2c ahead-of-time
compiler on the Linux operating system.

• HRTGC is implemented as a memory
management configuration in the OVM.

• OVM already implements a Metronome-like RTGC,
which we use as a baseline.

• Two real-time Java benchmarks were used for
comparing regular RTGC and HRTGC:

• RTZen, a 202 KLoC CORBA implementation
from UC Irvine, and

• CD, a 41 KLoC benchmark developed at Purdue.

• Both benchmarks were originally written to use
RTSJ scoped memory. We have previously
converted both to use our Metronome-like RTGC.

• For this evaluation, we again converted the
benchmarks, this time to use heaplets.

• Converting CD:

• The CD use a producer-consumer pattern. We placed the
producer and consumer in separate heaplets.

• Converting RTZen:

• We place the core of Zen into its own heaplet.

• The only changes were instrumentation in the main()
method to create the ORB in our new heaplet.

• Thus, the Zen benchmark demonstrates not only the
performance benefits of HRTGC, but the ease with which code
can be refactored to use it effectively.

• Both benchmarks use 227_mtrt from SPECjvm98 as a noise
maker.

Conversion to use HRTGC

• We use a fixed total footprint for all configurations.

• The collector schedules are optimized for highest
utilization while not allowing the memory usage to
diverge.

• Both CD and RTZen are event-driven - thus, we
record the total time required to handle each event
- a quantity we call the response time.

• Additionally, we measure the minimum mutator
utilization (MMU).

Measurements

RTZen Response Time

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u
ta

to
r

U
ti
li
z
a
ti
o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u

m
 M

u
ta

to
r

U
ti

li
z
a
ti

o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u
ta

to
r

U
ti
li
z
a
ti
o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

RTZen with RTGC

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u
ta

to
r

U
ti
li
z
a
ti
o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u

m
 M

u
ta

to
r

U
ti

li
z
a
ti

o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u
ta

to
r

U
ti
li
z
a
ti
o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

RTZen with RTGC

Worst case: 952us

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u
ta

to
r

U
ti
li

z
a
ti
o

n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

RTZen with HRTGC

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u
ta

to
r

U
ti
li

z
a
ti
o

n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

RTZen with HRTGC

HRTGC Worst case: 811us

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u
ta

to
r

U
ti
li

z
a
ti
o

n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

RTZen with HRTGC

RTGC Worst case: 952us
HRTGC Worst case: 811us

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u
ta

to
r

U
ti
li

z
a
ti
o

n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

RTZen with HRTGC

RTGC Worst case: 952us
HRTGC Worst case: 811us

HRTGC: 15% better

CD Response Time

CD with RTGC

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD
M

in
im

u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

CD with RTGC

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD
M

in
im

u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

Worst case: 8.255ms

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

CD with HRTGC

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

CD with HRTGC

HRTGC Worst case: 6.113ms

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

CD with HRTGC
RTGC Worst case: 8.255ms

HRTGC Worst case: 6.113ms

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o

n
se

 t
im

e
in

 m
ic

ro
se

co
n

d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD

M
in

im
u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

CD with HRTGC
RTGC Worst case: 8.255ms

HRTGC Worst case: 6.113ms

HRTGC: 26% better

MMU

• Minimum mutator utilization (MMU) shows
the worst-case amount of time the mutator
would get for a timeslice of a given length.

• Thus - MMU shows utilization (a number
from 0 to 1, where 1 is better) versus
timeslice size (in this case, in nanoseconds).

• We display MMU that has been empirically
measured for our two benchmarks (RTZen
and CD).

RTZen MMU

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in µs. The worst-case observed
response time over the entire run was 952 µs. The
227 mtrt benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The worst-case observed response time
over the entire run was 8.255 ms. The 227 mtrt
benchmark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

HRTGC Zen

RTGC (low footprint)

RTGC

HRTGC 227_mtrt + Zen

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(c) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

1000 2000 3000 4000 5000

200

400

600

800

1000

1200

1400

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in µs. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 µs. The 227 mtrt
benchmark is running in the background.

0 500 1000 1500 2000

3000

4000

5000

6000

7000

8000

9000

notebook.nb 1

Printed by Mathematica for Students

Number of Iterations

R
es

p
o
n
se

 t
im

e
in

 m
ic

ro
se

co
n
d
s

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in µs. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 mtrt bench-
mark is running in the background.

105 106 107 108 109 1010 1011

0.2

0.4

0.6

0.8

1

105 106 107 108 109 1010 1011

notebook.nb 1

Printed by Mathematica for Students

MMU for HRTGC and RTGC in CD
M

in
im

u
m

 M
u
ta

to
r

U
ti
li
z
a
ti
o
n

Window Size in Nanoseconds

HRTGC RTGC

HRTGC

RTGC

Window size in nanoseconds

M
u

ta
to

r
U

ti
li

z
a
ti

o
n

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig. 9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source – since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization
Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval δ as the minimum CPU
utilization by the mutator over all intervals of length δ .

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority ≥ p.

The Zen MMU, Fig. 9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
– in this case 227 mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 µs. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint
We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

CD MMU

A more in-depth
discussion of the
algorithm, and the

results, is found in the
paper.

Questions/Comments

