
Accurate Garbage
Collection

in
Uncooperative Environments

with
Lazy Pointer Stacks

Jason Baker, Antonio Cunei, Filip Pizlo, Jan Vitek
Purdue University

New Programming Language

Native Code

C
om

pi
le

Hard! Old Programming
Language

Translate

Use
Old

Compiler

Which Old Language?

• Lots of systems translate to C or C++

• Can use freely available high quality
compilers like GCC to target many
platforms (x86, AMD64, PowerPC, SPARC,
ARM, etc.)

• Portability and speed (almost) for free!

So what is the Problem?

• In three words: accurate garbage collection.

• Most new languages have some form of
garbage collection.

• Accurate garbage collection is often
preferred as it reclaims more memory and
is more predictable than conservative
garbage collection.

• However, accurate GC requires accurate
stack maps.

void foo(void) {
 void *ptr = alloc();
 if (ptr == 0) error();
 bar(ptr);
}

_foo:
mflr r0
stmw r30,-8(r1)
stw r0,8(r1)
stwu r1,-80(r1)
bl L_alloc$stub
mr. r30,r3
bne+ cr0,L2
bl L_error$stub

L2:
mr r3,r30
bl L_bar$stub
lwz r0,88(r1)
addi r1,r1,80
mtlr r0
lmw r30,-8(r1)
blr

• Accurate GC requires accurate stack maps.

• Most C/C++ compilers cannot provide
accurate stack maps.

• We would like to scan the stack
accurately while still using a stock C++
compiler as our back-end.

Old Approaches

• Pointer Stacks

• Henderson’s linked lists

Pointer Stacks

• Idea: put all pointer local variables into an
array in the heap.

• Make accesses to these locals go to the
array.

• To find pointers, just scan this array.

• We say that the array is an explicit pointer
stack because it mimics the normal C stack
but contains only pointers.

Pointer Stacks
void foo() {
 void *ptr = alloc();
 bar(ptr);
}

extern void **pStackTop;
void foo() {
 pStackTop++;
 pStackTop[-1] = alloc();
 bar(pStackTop[-1]);
 pStackTop--;
}

Henderson’s Linked Lists

• See Henderson ISMM’02, or our paper, for
details.

• Same basic idea as pointer stacks, but uses
a linked list instead of an array.

Analysis of these
approaches

• Both approaches are legal C (or C++) and so
are portable - they will have the desired effect
on any standards-compliant compiler.

• Both approaches make stack scanning very easy.

• Neither approach allows register allocation of
pointer locals.

• Both approaches add code to the prologue and
epilogue

Can we do better?

• The goal is to allow local pointers to be
register allocated.

• Further, we wish to minimize the amount of
additional code in the prologue and
epilogue.

• Is this possible?

The Idea

• Keep pointers in local variables

• Allow C++ compiler to place pointers
anywhere.

• Have a mechanism for moving the pointers
from the C++ local variables to a well-
known heap location on-demand.

• When the collector wishes to scan the stack, it
causes every thread to throw an exception.

• Transform each safe point to catch the exception and
save pointers to a pointer stack.

• After pointers are saved, the exception is rethrown.

• When this process completes, two things will have
happened:

• First, the collector will have accurate pointer
information, and

• second, all thread stacks will be destroyed!

void foo() {
 void *ptr = alloc();
 try {
 bar(ptr);
 } catch (const StackScanException&) {
 lazyPtrStack->pushPtr(ptr);
 throw;
 }
}

Two problems remain!

• First, we must find a way to restore the
stacks to their previous state so that the
program can execute, and

• second, we still need a way of allowing the
collector to restore the pointers to new
values (to support moving collection).

The solution to the
first problem...

Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

D
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th stackBase

stackCur

Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

stackBase

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

Bootstrap Frame
stackBase,

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

D
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

stackBase

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

(a) Switch to a thread that needs stack walking. (b) Copy the portion of the stack that will be unwound.

(c) Stack is unwound, but we still have a copy. (d) Restore the stack with a second copy, use context switch to

restore registers. Thread is now back to where it was in (a).

Figure 4. Example of stack unwinding with call stack restoration.

M

G

(a) Initial stack

M

(b) M calls A,

which calls B

B

A

M

(c) B initiates

GC.

B

A

(d) stack is

scanned.

(e) GC runs; B, A,

and M become dirty.

(f) pop into B,

restore pointers

G

M

B

A

st
ac

k
sc

an
n
in

g

G

M

B

A

M

A

B
ptr restore

(g) B is now

clean.

M

A

B

(h) B calls C.

M

A

B

C

(i) C returns to B.

M

A

B

(j) B initiates GC.

M

A

B

G

(k) only B is

scanned.

G

M

B

A

st
ac

k
sc

an
n
in

g

(l) after GC, B is

dirty again.

G

M

B

A

height = 0

auxHeight = 0

height = 2

auxHeight = 0

height = 3

auxHeight = 0

height = 3

auxHeight = 0

height = 3

auxHeight = 3 height = 2

auxHeight = 3

height = 2

auxHeight = 2

height = 3

auxHeight = 2

height = 2

auxHeight = 2

height = 3

auxHeight = 2

height = 3

auxHeight = 2

height = 3

auxHeight = 3

Figure 7. Example of lazy pointer stacks with pointer restoration.

5 2006/3/18

Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

D
ir

ec
ti
o

n
 o

f
st

ac
k

gr
o
w

th stackBase

stackCur

Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

stackBase

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

Bootstrap Frame
stackBase,

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

D
ir

ec
ti
o

n
 o

f
st

ac
k

gr
o
w

th Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

stackBase

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

(a) Switch to a thread that needs stack walking. (b) Copy the portion of the stack that will be unwound.

(c) Stack is unwound, but we still have a copy. (d) Restore the stack with a second copy, use context switch to

restore registers. Thread is now back to where it was in (a).

Figure 4. Example of stack unwinding with call stack restoration.

M

G

(a) Initial stack

M

(b) M calls A,

which calls B

B

A

M

(c) B initiates

GC.

B

A

(d) stack is

scanned.

(e) GC runs; B, A,

and M become dirty.

(f) pop into B,

restore pointers

G

M

B

A

st
ac

k
sc

an
n

in
g

G

M

B

A

M

A

B
ptr restore

(g) B is now

clean.

M

A

B

(h) B calls C.

M

A

B

C

(i) C returns to B.

M

A

B

(j) B initiates GC.

M

A

B

G

(k) only B is

scanned.

G

M

B

A

st
ac

k
sc

an
n

in
g

(l) after GC, B is

dirty again.

G

M

B

A

height = 0

auxHeight = 0

height = 2

auxHeight = 0

height = 3

auxHeight = 0

height = 3

auxHeight = 0

height = 3

auxHeight = 3 height = 2

auxHeight = 3

height = 2

auxHeight = 2

height = 3

auxHeight = 2

height = 2

auxHeight = 2

height = 3

auxHeight = 2

height = 3

auxHeight = 2

height = 3

auxHeight = 3

Figure 7. Example of lazy pointer stacks with pointer restoration.

5 2006/3/18

Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

D
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th stackBase

stackCur

Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

stackBase

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

Bootstrap Frame
stackBase,

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

D
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

stackBase

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

(a) Switch to a thread that needs stack walking. (b) Copy the portion of the stack that will be unwound.

(c) Stack is unwound, but we still have a copy. (d) Restore the stack with a second copy, use context switch to

restore registers. Thread is now back to where it was in (a).

Figure 4. Example of stack unwinding with call stack restoration.

M

G

(a) Initial stack

M

(b) M calls A,

which calls B

B

A

M

(c) B initiates

GC.

B

A

(d) stack is

scanned.

(e) GC runs; B, A,

and M become dirty.

(f) pop into B,

restore pointers

G

M

B

A

st
ac

k
sc

an
n

in
g

G

M

B

A

M

A

B
ptr restore

(g) B is now

clean.

M

A

B

(h) B calls C.

M

A

B

C

(i) C returns to B.

M

A

B

(j) B initiates GC.

M

A

B

G

(k) only B is

scanned.

G

M

B

A

st
ac

k
sc

an
n

in
g

(l) after GC, B is

dirty again.

G

M

B

A

height = 0

auxHeight = 0

height = 2

auxHeight = 0

height = 3

auxHeight = 0

height = 3

auxHeight = 0

height = 3

auxHeight = 3 height = 2

auxHeight = 3

height = 2

auxHeight = 2

height = 3

auxHeight = 2

height = 2

auxHeight = 2

height = 3

auxHeight = 2

height = 3

auxHeight = 2

height = 3

auxHeight = 3

Figure 7. Example of lazy pointer stacks with pointer restoration.

5 2006/3/18

Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

D
ir

ec
ti
o

n
 o

f
st

ac
k

gr
o
w

th stackBase

stackCur

Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

stackBase

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

Bootstrap Frame
stackBase,

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

D
ir

ec
ti
o

n
 o

f
st

ac
k

gr
o
w

th Bootstrap Frame

App Frame

App Frame

App Frame

App Frame

Context Switch

stackBase

stackCur

App Frame

App Frame

App Frame

App Frame

Context Switch

Stack Copy

(a) Switch to a thread that needs stack walking. (b) Copy the portion of the stack that will be unwound.

(c) Stack is unwound, but we still have a copy. (d) Restore the stack with a second copy, use context switch to

restore registers. Thread is now back to where it was in (a).

Figure 4. Example of stack unwinding with call stack restoration.

M

G

(a) Initial stack

M

(b) M calls A,

which calls B

B

A

M

(c) B initiates

GC.

B

A

(d) stack is

scanned.

(e) GC runs; B, A,

and M become dirty.

(f) pop into B,

restore pointers

G

M

B

A

st
ac

k
sc

an
n
in

g

G

M

B

A

M

A

B
ptr restore

(g) B is now

clean.

M

A

B

(h) B calls C.

M

A

B

C

(i) C returns to B.

M

A

B

(j) B initiates GC.

M

A

B

G

(k) only B is

scanned.

G

M

B

A

st
ac

k
sc

an
n
in

g

(l) after GC, B is

dirty again.

G

M

B

A

height = 0

auxHeight = 0

height = 2

auxHeight = 0

height = 3

auxHeight = 0

height = 3

auxHeight = 0

height = 3

auxHeight = 3 height = 2

auxHeight = 3

height = 2

auxHeight = 2

height = 3

auxHeight = 2

height = 2

auxHeight = 2

height = 3

auxHeight = 2

height = 3

auxHeight = 2

height = 3

auxHeight = 3

Figure 7. Example of lazy pointer stacks with pointer restoration.

5 2006/3/18

Problem 2: Moving GC

What about pointer restoration?

• We cannot directly modify the stack to update the pointers
- because we still have no idea where the C++ compiler has
placed pointers!

• All we can do is generate C++ code that performs pointer
replacement in the context of the affected frame.

• Thus, we wish for some code to run at the safe point, but
this time:

• We want to run the code when the called function
actually returns following GC,

• and we want to take this opportunity to restore pointers.

• Assume for a moment that we can
magically throw an exception when we
return for the first time into a frame after
GC.

• Then we can use the same strategy as
before: a catch block that runs restoration
code.

And the code looks
like...

void *ptr;
try {
 functionCall();
} catch (const StackScanException&) {
 if (saving) {
 lazyPtrStack->pushPtr(ptr);
 throw;
 } else if (restoring) {
 ptr = lazyPtrStack->popPtr();
 if (returned normally) {
 restore return value;
 } else {
 throw app exception;
 }
 }
}

• How to run the pointer restoration code at the
right time?

• When the GC runs, it updates pointers in
its own pointer stack, and then installs
thunks at every frame on the stack.

• The thunk throws the StackScanException
when invoked.

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . . ;

functionCall();
if (save()) {

lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
return;

}

(a) Function call guarded with the accurate pointer
guard

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .

height++;
functionCall();
height--;
if (save()) {

if (height < auxHeight) {
stop unwinding, restore the stack;

} else {
lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
return;

}
} else if (height < auxHeight) {

ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .
lazyPointerStack->popFrame();
auxHeight--;

}

(b) Function call with pointer frame counting

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .;

try {
functionCall();

} catch (const StackScanException&) {
if (save()) {

lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
throw;

} else {
ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .
lazyPointerStack->popFrame();
if (had application exception) {

throw application exception
} else {

retrieve return values
}

}
}

(c) Function call with safe point catch and thunk

Figure 9. Lazy pointer stack techniques.

G

M

B

A

thunk

thunk

thunk

(a) after GC, install

thunks above dirty

frames.

M

B

A

throw exception!

thunk

thunk

(b) GC returns,

exception is thrown.

M

B

A

catch exception,

restore ptrs

thunk

thunk

(c) B catches

exception, restores

pointers

M

B

A

thunk

thunk

(d) B is now clean,

executes normally.

Figure 10. Example of using thunks to restore pointers.

Thunk PC

CallerD
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th

Return PC

Return PC

Caller

Caller

(a) Ordinary callstack

for C or C++ code.

- capture return values

- catch user exceptions

- restore proper return PC

- throw StackScanException

- or restore backup stack

and proceed with GC.

The Thunk

D
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th

Thunk PC

Thunk PC

Caller

Caller

(b) "Thunkified" callstack.

- capture return values

- catch user exceptions

- restore proper return PC

- throw StackScanException

- or restore backup stack

and proceed with GC.

The Thunk

D
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th

Thunk PC

Caller

(c) If a function completes (either by

return or throw), the thunk runs.

T
h
u
n
k

R
u
n
s!

Figure 11. Installing thunks in a C++ call stack.

7 2006/3/18

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . . ;

functionCall();
if (save()) {

lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
return;

}

(a) Function call guarded with the accurate pointer
guard

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .

height++;
functionCall();
height--;
if (save()) {

if (height < auxHeight) {
stop unwinding, restore the stack;

} else {
lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
return;

}
} else if (height < auxHeight) {

ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .
lazyPointerStack->popFrame();
auxHeight--;

}

(b) Function call with pointer frame counting

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .;

try {
functionCall();

} catch (const StackScanException&) {
if (save()) {

lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
throw;

} else {
ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .
lazyPointerStack->popFrame();
if (had application exception) {

throw application exception
} else {

retrieve return values
}

}
}

(c) Function call with safe point catch and thunk

Figure 9. Lazy pointer stack techniques.

G

M

B

A

thunk

thunk

thunk

(a) after GC, install

thunks above dirty

frames.

M

B

A

throw exception!

thunk

thunk

(b) GC returns,

exception is thrown.

M

B

A

catch exception,

restore ptrs

thunk

thunk

(c) B catches

exception, restores

pointers

M

B

A

thunk

thunk

(d) B is now clean,

executes normally.

Figure 10. Example of using thunks to restore pointers.

Thunk PC

CallerD
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th

Return PC

Return PC

Caller

Caller

(a) Ordinary callstack

for C or C++ code.

- capture return values

- catch user exceptions

- restore proper return PC

- throw StackScanException

- or restore backup stack

and proceed with GC.

The Thunk

D
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th

Thunk PC

Thunk PC

Caller

Caller

(b) "Thunkified" callstack.

- capture return values

- catch user exceptions

- restore proper return PC

- throw StackScanException

- or restore backup stack

and proceed with GC.

The Thunk

D
ir

ec
ti
o
n
 o

f
st

ac
k

gr
o
w

th

Thunk PC

Caller

(c) If a function completes (either by

return or throw), the thunk runs.

T
h
u
n
k

R
u
n
s!

Figure 11. Installing thunks in a C++ call stack.

7 2006/3/18

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . . ;

functionCall();
if (save()) {

lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
return;

}

(a) Function call guarded with the accurate pointer
guard

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .

height++;
functionCall();
height--;
if (save()) {

if (height < auxHeight) {
stop unwinding, restore the stack;

} else {
lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
return;

}
} else if (height < auxHeight) {

ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .
lazyPointerStack->popFrame();
auxHeight--;

}

(b) Function call with pointer frame counting

// pointers in locals
void *ptr1, *ptr2, *ptr3, . . .;

try {
functionCall();

} catch (const StackScanException&) {
if (save()) {

lazyPointerStack->pushFrame(nptrs);
lazyPointerStack->pushPtr(ptr1);
lazyPointerStack->pushPtr(ptr2);
lazyPointerStack->pushPtr(ptr3);
. . .
throw;

} else {
ptr3 = lazyPointerStack->popPtr();
ptr2 = lazyPointerStack->popPtr();
ptr1 = lazyPointerStack->popPtr();
. . .
lazyPointerStack->popFrame();
if (had application exception) {

throw application exception
} else {

retrieve return values
}

}
}

(c) Function call with safe point catch and thunk

Figure 9. Lazy pointer stack techniques.

G

M

B

A

thunk

thunk

thunk

(a) after GC, install

thunks above dirty

frames.

M

B

A

throw exception!

thunk

thunk

(b) GC returns,

exception is thrown.

M

B

A

catch exception,

restore ptrs

thunk

thunk

(c) B catches

exception, restores

pointers

M

B

A

thunk

thunk

(d) B is now clean,

executes normally.

Figure 10. Example of using thunks to restore pointers.

Thunk PC

CallerD
ir

ec
ti
o

n
 o

f
st

ac
k

gr
o
w

th

Return PC

Return PC

Caller

Caller

(a) Ordinary callstack

for C or C++ code.

- capture return values

- catch user exceptions

- restore proper return PC

- throw StackScanException

- or restore backup stack

and proceed with GC.

The Thunk
D

ir
ec

ti
o

n
 o

f
st

ac
k

gr
o
w

th

Thunk PC

Thunk PC

Caller

Caller

(b) "Thunkified" callstack.

- capture return values

- catch user exceptions

- restore proper return PC

- throw StackScanException

- or restore backup stack

and proceed with GC.

The Thunk

D
ir

ec
ti
o

n
 o

f
st

ac
k

gr
o
w

th

Thunk PC

Caller

(c) If a function completes (either by

return or throw), the thunk runs.

T
h

u
n

k
R

u
n

s!

Figure 11. Installing thunks in a C++ call stack.

7 2006/3/18

“Safe Point Catch And
Thunk”

1. Throw an exception to trigger stack
scanning.

2. Keep a backup copy of the original stack to
allow the thread to continue as normal
after stack scanning.

3. Install thunks that trigger pointer
restoration after the GC runs.

• We have also experimented with using a counting
scheme to emulate the exception and thunk
scheme.

• Put simply, each callsite contains instrumentation
that dynamically checks if pointers should be saved
or restored, by using counters that keep track of
stack height.

• Collectively, we call this class of mechanisms “lazy
pointer stacks.”

Implementation

• We have implemented explicit pointer stacks,
Henderson’s linked lists, safe point catch and
thunk, and pointer frame counting in the Ovm
and J2c compiler.

• Ovm is a real time Java virtual machine
developed at Purdue.

• J2c is Ovm’s ahead-of-time compiler. It
generates C++ code, and GCC is used as the
backend.

• By default, Ovm+J2c uses mostlyCopying, a
Bartlett-style semispace garbage collector that
performs conservative stack scanning.

• We have added the ability to perform accurate
stack scanning using the four techniques. The
user is allowed to select the stack scanning style
at compile time.

• The mechanism is modular - any of Ovm’s
collectors, including our RTGC, can select any of
the stack scanning implementations.

• We use the industry-standard SPECjvm98
benchmark suite.

• Each benchmark was run with the five stack
scanning configurations (conservative, ptr
stack, henderson, thunking, and counter) under
Ovm+J2c+mostlyCopying at various heap sizes.

• We used a Pentium IV Linux machine with 512
MB of RAM for all runs.

• Additionally, we compared against the HotSpot
JVM or GCJ (see paper).

Experimental Evaluation

Overhead relative to Conservative
for Large heap (256MB)

co
mpr

es
s

jes
s db

jav
ac

mpe
ga

ud
io

mtrt jac
k

Geo
. M

ea
n

-2.5%

0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

20.0%
Ptr Stack
Thunking

Henderson
Counter

O
ve

rh
ea

d
re

la
tiv

e
to

 C
on

se
rv

at
iv

e

Overhead relative to Conservative
for Small heap (32MB)

co
mpr

es
s

jes
s db

jav
ac

mpe
ga

ud
io

mtrt jac
k

Geo
. M

ea
n

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%
Ptr Stack
Thunking

Henderson
Counter

O
ve

rh
ea

d
re

la
tiv

e
to

 C
on

se
rv

at
iv

e

Code Size for
SPECjvm98 in KB

Conservative 3376

Ptr Stack 3857

Henderson 4031

Thunking 11081

Counter 9320

See the paper for more algorithmic details
and more performance evaluation (different
heap sizes, some profiling, etc.)

The End

