
Loci: Simple Thread-Locality for Java

Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, Jan Vitek

Computer Science Dept.
Purdue University

Abstract. This paper presents a simple type system for thread-local
data in Java. Classes and types are annotated to express thread-locality
and unintended leaks are detected at compile-time. The system, called
Loci, is minimal, modular and compatible with legacy code. The only
change to the language is the addition of two new metadata annotations.
We implemented Loci as an Eclipse plug-in and used it to evaluate our
design on a number of benchmarks. We found that Loci is compatible
with how Java programs are written and that the annotation overhead
is light thanks to a judicious choice of defaults.

1 Introduction

Statically determining whether part of a computation takes place solely inside
a single thread is desirable for several reasons. Not only does it simplify reason-
ing, but it enables optimizations that are only possible in sequential code, for
example, to improve the performance of automatic memory management algo-
rithms [17, 32] or remove unnecessary synchronization [2, 1]. Java has supported
thread-local fields with the ThreadLocal class since version 1.2 of the language.
Using this API, each thread can have its own copy of a field and use that in
a race-free manner. Another example of use is the detection of deadlock and
shutdowns in a CORBA implementation [25].

When used with simple or immutable data types, the ThreadLocal API offers
sufficient protection. However, when used with mutable complex data types the
safety offered by the ThreadLocal API can be likened to that of name-based
encapsulation: the field is guaranteed to be thread-local, but not its contents.
For example, a reference obtained from a thread-local field can subsequently be
shared across threads, which may violate thread-locality assumptions elsewhere
in the program. This also means that compilers can not rely on thread-locality
in their optimizations.

In this paper, we propose a simple, statically checkable set of annotations
that lets programmers express thread-locality. Our system, Loci, was designed
with Java in mind, but should apply to Java-like languages with only a modicum
of changes. We extend Java with two annotations: @Thread, to denote potentially
thread-local objects and @Shared to denote shared objects. Classes that do not
leak this to shared fields can be marked @Thread to denote that they are safe
to use for thread-local computation. Annotations on fields, parameters, local
variables and method returns are then used to express thread-locality of objects

in the program. Loci statically verifies that a program’s thread-local behavior
corresponds to the programmer’s intentions and thus enforces proper use of
Java’s ThreadLocal API. Experiments with Loci on ≥45 000 lines of Java code
validate our design and suggest improvements.

The design of Loci was driven by a quest for simplicity and practical appli-
cability. To minimize syntactic overhead, and increase reusability of code and
libraries, Loci uses a default annotation system on types controlled by class-level
annotations. In many cases, a single class-level annotation is necessary to make a
class suitable for use in thread-local computation. Furthermore, the defaults have
been chosen so that all existing Java programs are valid Loci programs. Loci is an
ownership types system that uses threads as owners, instead of objects, similar
in spirit to [30, 14]. This paper makes the following contributions:

1. It proposes Loci, a simple annotation system for Java-like languages that can
statically express and enforce proper use of thread-local data and integrates
reasonably well with legacy code, specifically, all existing Java programs have
a valid Loci semantics.

2. An implementation of Loci in an Eclipse plug-in which integrates error
reporting with the Eclipse IDE and performs bytecode-level rewriting of
thread-local field accesses and thread-local methods.

3. Reports on experimental results from annotating classes in existing Java
programs. We have refactored some benchmark programs by hand and, in
parallel, we have implemented an inference algorithm as well as a dynamic
tracking algorithm.

The main motivation for our work is to statically enforce thread-locality in
Java. Loci allows programmers to declare their intentions with respect to thread-
locality and checks statically that those intentions are never violated. The knowl-
edge that some of the data manipulated by a system is guaranteed to be race-free
is a big help for programmers as they need not worry about concurrency control
for those parts of the system.

There are other potential benefits to thread-locality that we intend to explore.
For starters, we believe that thread-locality information can be used to improve
performance. Trivially, thread-local objects are free from data races and no locks
need to be acquired for such objects. Thread-locality also has positive effects
on garbage collection. For example, collecting thread-local data can be done
in parallel without synchronization. In a reference counted collector, reference
counts on thread-local objects can be modified directly without a compare-and-
swap. Previous work [17] shows overall speedups of 50% when using thread-local
heaps in Java. As a last example, thread-locality could be used to cache field
reads for local manipulation in methods, before written back.

Another interesting future application of thread-locality lies in real-time com-
puting. Run-time facilities used to execute Java programs typically have a very
fast path that speculatively assumes properties that would be implicit with
thread locality. For example, thin locks [3] and biased locks [29] assume a lack of
contention. While this results in good performance for systems in which only the

2

overall throughput is important, it is of no use to systems in which the worst-
case performance is the more interesting property. Thread-locality can aid the
worst-case analysis of real-time programs, by assuring the developer that the
slow-path will never be taken. Typical Java programs use locking in the form of
the synchronized statement freely under the assumption that it is cheap. Unfor-
tunately, locking is only cheap when it is uncontended. Proving this with a static
analysis is hard, but can be made easy for a large subset of the program by using
Loci. While real-time garbage collection is gaining acceptance, its performance
is still lagging. Using thread-local heaps, or similar variants thereof [27, 30], in-
creases both mutator utilization and scalability. Existing systems accomplish
this with a combination of run-time checks, analyzes performed at run-time on
object graphs, and extremely strict confined types systems. Loci could be used
to achieve a similar effect with more expressive power and less work on the part
of the programmer.

2 Informal Introduction to Loci

We now informally describe the Loci system, its logical run-time view of the heap
and the annotation system.

2.1 Example

As first example, Fig. 1 shows Loci preventing a supposedly thread-local variable
from a thread’s run method to be leaked. The class Leaky is a thread with a field
unsafe of type String[]. The run() method stores a reference to an object that
was intended to be thread-local into that field, thus making it possible for another
thread to read the field and perform concurrent updates on the array.

In many cases, the only variable that needs to be explicitly annotated in Loci
is the root variable on the bottom stack-frame in the thread’s run-method. The
Loci class Safe is a thread where the field unsafe has been marked @Shared. This
means that it is a field that can be read by multiple threads. In the method run,
the local variable is marked @Thread to denote that it is intended to be thread-
local. Loci will flag the assignment of line 6 as a compile-time error because it
breaks the thread-locality guarantee on local.

In cases where the thread needs to explicitly store thread-local variables on
the heap, a @Thread field can be used. Class NotSoLeaky is a correct implemen-
tation of Leaky that uses the ThreadLocal API explicitly to store the contents
of the local variable in a thread-local field. The same effect can be achieved in
Loci by annotating a field as @Thread. This is done in class Safe where the field
safe is thread-local. In this case, Loci will silently transform the code written by
the programmer (at compile-time) into equivalent code which uses ThreadLocal.

To sum up, Loci guarantees that the contents of any field or variable anno-
tated @Thread is and will remain thread-local. For variables this is done entirely
at compile-time (by restricting assignments) and for fields the guarantee is ob-
tained by translation into using the ThreadLocal API.

3

1 class Leaky extends Thread {
2 String[] unsafe;

3

4 public void run() {
5 String[] local = ...;

6 unsafe = local; // leak

7

8 } }

9 ...

10 Leaky t;

11 ... = t.unsafe;

12

class Safe extends Thread {
@Shared String[] unsafe;

@Thread String[] safe;

public void run() {
@Thread String[] local = ...;

unsafe = local; // wont compile

safe = local; // OK

} }

...

Safe t;

... = t.unsafe;

... = t.safe; // no leak

1 class NotSoLeaky extends Thread {
2 ThreadLocal<String[]> safe = new ThreadLocal<String[]>();
3

4 public void run() { String[] local = ...; safe.set(local); }
5 }

6 ...

7 NotSoLeaky t = ...;

8 ... = t.safe.get();

Fig. 1. Enforcing thread-locality with Loci. Line 6 marked Leak in the leftmost ex-
ample is prevented statically. On Line 12, the assignment from safe does not cause a
leak, as different threads get different values when reading a thread-local field. Class
NotSoLeaky is safe as it uses the the ThreadLocal API, Loci provides more convenient
syntax for the same. Whenever ever a field is annotated @Thread, the Loci compiler
will turn it into a ThreadLocal.

2.2 Logical View of the Heap

In Loci, the heap of a program with n threads is logically partitioned into n
number of isolated heaps, called “heaplets”, plus a shared heap. There is a one-
to-one mapping between threads and heaplets. From now on, heap refers to the
shared heap accessible by all threads, and heaplets refers to thread-local heaps.
The Loci annotation system enforces the following simple properties on Java
programs, shown in Fig. 2:

1. References from one heaplet into another are not allowed ();
2. References from heaplets to the shared heap are unrestricted ();
3. References from the shared-heap into a heaplet must be stored in a thread-

local field ().

The third property above ensures that even though a reference into a heaplet ρi

may exist on the shared heap, it is only accessible to the thread i to which ρi

belongs. If another thread j reads the same field, it will either get a reference into
its own heap ρj that it had written there before, or a thread-local copy of the

4

ρ1 ρ2 ρ3 ρ4 ϱ

(a)

(b)
(c)

(d)

(e)

Fig. 2. Thread-Local Heaplets and a Shared Heap. The teal area (%) is the shared heap,
white areas (ρ1..ρ4) represent the thread-local heaplets. Solid arrows are invalid and
correspond to property 1 in Sec. 2.2, dashed arrows are valid pointers into the shared
heap (property 2), respectively from the shared heap into heaplets (property 3, when
“anchored” in a bullet). The right-most figure is a Venn diagram-esque depiction of
the same program to illustrate the semantics of the shared heap.

default value of the field (which may be null). Effectively, there is a copy of each
thread-local field for each active thread in the system and writes and reads of
the same thread-local field by different threads access different copies. Together,
these simple properties make heaplets effectively thread-local, and objects in the
heaplets are thus safe from race conditions and data races.

2.3 Annotations

Loci uses two annotations, @Thread and @Shared, their semantics is summarized
in Table 1. We distinguish between class-level annotation and annotations on
types in declarations. Class-level annotations control how instances of a class
can be used. Instances of classes annotated @Shared always live in the shared

Annotation Level

@Shared Class Instances are always allocated in the shared heap.
@Thread Class Instances can be allocated either in the shared heap or in heaplets.

– Class Equivalent to @Shared.

@Shared Field May point into the heap or into a heaplet.
@Thread Field Must refer to a heaplet-allocated value. Access to the object is

through the ThreadLocal API.
– Field Treated as @Shared if the enclosing class is @Shared, and as a

@Thread local variable otherwise. (@Context in the formalism.)

@Shared Local May point into the heap or into a heaplet.
@Thread Local Must refer to a heaplet-allocated value.

– Local Treated as @Shared if the enclosing class is @Shared, and @Thread
otherwise. (Called @Context in the formalism.)

Table 1. Loci annotations.

5

1 @Thread class Foo { Foo f; }
2 @Shared Foo x;

3 @Thread Foo y;

4 Foo z;

5 @Shared Foo xx = x.f;

6 @Thread Foo yy = y.f;

7 Foo zz = z.f;

8 yy.f = z; // Illegal

@Shared class S { S f; }
@Shared S x;

@Thread S y; // Illegal

S z = x = x.f;

@Thread class C { C m(S) { ... } }
@Thread C c;

c = c.m(x.f);

Fig. 3. Loci by example. Left: f in Foo will live on same heap(let) as the enclosing
obj. Thus, 5–7) are valid. Depending on the current context, z can be both shared and
unshared. Thus, 8) is illegal. However, when we know the nature of the context, we can
figure out the precise type (y in 6). Right: Line 3) demonstrates that @Shared classes
cannot be pointed to by @Thread variables. Line 4) shows that an unannotated field in
a @Shared class will also be shared. Line 6) trivially shows viewpoint adaptation.

heap. Instances of classes annotated @Thread may live on the shared heap, or
on a thread-local heap. The class-level annotations control the implicit defaults
used on types in the class. In a @Shared class, all types are implicitly shared.
Unless explicitly declared @Thread, fields in a @Shared class point to objects in the
shared heap. Fig. 3 contains some example uses of the annotations. In @Thread-
annotated classes, the default annotation is empty (@Context in the formalism),
which is a non-annotation only used implicitly. Empty is equivalent to owner in
ownership types systems and means “the same as the enclosing instance.” If f is
an unannotated field in an instance o of a @Thread class, f will point to an object
in the same heaplet as o, or into the shared heap iff o is in the shared heap. In
practice, the implicit default value is right most of the time. Oftentimes, a single
class-level annotation is all that is necessary. When accessing an unannotated
field of a @Thread variable, the field’s annotation will automatically default to
@Thread. We refer to this as viewpoint adaptation and it is a simplified version
of σ-substitution found in several ownership types formalisms [12, 13, 34, 26].

Rather than splitting classes into thread-local and not, a @Thread class can be
used to instantiate both thread-local and shared objects. This makes code more
flexible and reusable in both shared and unshared context which is important
for library classes. The main restriction for @Thread classes is that they may
not assign from this in a way that could invalidate isolation. This is simple
to check statically—disallow values whose annotation is unknown to be stored
in explicitly annotated fields or variables. Since globals are always @Shared, a
@Thread class may not leak this into them and so the only way to invalidate
thread-locality is by storing this in a constructor argument. To that end, if a
constructor takes 0 arguments or all @Thread arguments, the new object will be
thread-local. Otherwise it will be shared.

Fields, variables, parameters and return types annotated @Thread or @Shared
point to thread-local respectively shared objects. If the annotation is empty, it is
effectively the same as the current this. To maintain compatibility with existing

6

@Thread class RayTracerRunner extends RayTracer {
@Shared Barrier br = null; # Barrier is shared between threads

...

}

...

// was thobjects[i] = new RayTracerRunner(i, wdt, hgt, brl);

thobjects[i] = new Thread() {
public void run() {
@Thread RayTracerRunner _ = new RayTracerRunner(i, wdt, hgt, brl);
_.run(); // Start thread-local computation

}

};

...

Fig. 4. Code from Raytracer in JavaGrande refactored with Loci annotations.

Java code, the default class-level annotation is @Shared. Thus, the class Thread
is shared (which is the only sensible option), and as subclassing must preserve
annotations in Loci (modulo for Object, see below), the derived thread classes in
Fig. 1 must also be @Shared.

The root class Object is annotated @Thread. We treat it specially in that we
allow it to be extended as @Shared. This is type safe, and as subtyping preserves
annotations, cannot be used to confuse the type system.

Finally, Fig. 4 shows an example from Raytracer in the JavaGrande bench-
marks where RayTracer classes all the classes that are used by RayTracer are
annotated @Thread, modulo the shared barrier. The computation is thus entirely
thread-local. The arrays of threads contain threads that simply start the thread-
local computation.

2.4 Migrating Objects

Some concurrent programming idioms are characterized by phased access to ob-
jects. For example, in a producer-consumer pattern, an object is first accessed
exclusively by the producer thread before being handed out to the consumer
thread which then has sole access to the object. This goes beyond the kind of
thread-locality expressible directly in Loci or most simple ownership type sys-
tems. Approaches based on linearity are feasible but they would overly compli-
cate the type system. In Loci, when thread-local objects must migrate between
threads it is necessary to perform a deep copy via the heap. Fig. 5 shows a
method that copies an instance of Foo from Fig. 3 from a heaplet to the shared
heap. Copying an object directly across heaplets is not yet supported, but we
plan to investigate simple ways of doing this in the future.

For now, two threads in a producer-consumer relationship wishing to transfer
unshared objects across via for example a shared queue, must copy the objects

7

twice and place them on the shared heap. As noted in Sec. 2.3, most newly
created instances of @Thread classes can safely be stored anywhere.

Two minor technicalities prevent us from doing direct inter-heaplet migra-
tion. Firstly, we cannot name a field belonging to another thread. Second, the
annotations can only express references into the current thread’s heaplet or the
shared heap. Extending the system to allow both is relatively straightforward.
Writing to another thread’s field can be as simple as extending ThreadLocal with
a put(Thread t, Object val) method. A @StackLocal annotation could also be
employed to type the put() method, and at the same time obviate the need
for two deep copy methods, but would further complicate the system, especially
when preserving aliasing through a cache like in Fig. 5.

1 @Shared Foo copyToShared(Cache cache) {

2 if (cache.hasKey(this)) return cache.get(this);
3 @Shared Foo copy = new Foo();
4 cache.put(this, copy);
5 if (f != null) {
6 copy.f = f.copyToShared(cache);

7 }

8 return copy;
9 }

Fig. 5. A simple deep copy method for Foo that makes a shared copy of a possibly
thread-local object. Cache is a @Thread map from keys to @Shared objects. Removing
@Shared would make the method return a thread-local copy, as Foo is a @Thread class.

2.5 Run-Time Overhead

Loci does not add run-time overhead over the equivalent Java programs. It does
not need to store to what heap(let) an object belongs at run-time. @Thread-
annotated local variables, parameters and method returns all live on the stack
and are thus effectively thread-local without the need for any additional magic.
Most notably, implicitly thread-local fields (e.g., f in Fig. 3) in @Thread-annotated
classes do not incur any additional overhead. The key realization is that access
to the enclosing object acts as a guard (similar observations have been done
elsewhere, e.g., [13, 34, 16, 18]):

If the enclosing object is only reachable by its “owning thread”, the same
holds for all objects pointed to by its non-@Shared fields.

The overhead of @Thread-annotated fields is due to their implementation using
Java’s ThreadLocal API. Micro benchmarks suggest that access to a thread-local
field is about 8 times slower than a regular field access. In our experience, fields
only need to be annotated @Thread in the places where the Java program would
have used the ThreadLocal API explicitly.

8

3 A Formal Account of Loci

We formalize our system in a subset of Java. For brevity, we omit commonly
omitted features, such as overriding, interfaces, exceptions, final variables, prim-
itive data types, arrays and generics. Generics is not yet supported by Loci as
Java does not yet support annotations on type parameters. Should JSR 308,
“Type Annotations” be accepted, adding support for annotating type parame-
ters would be straightforward and would improve our story for collection classes.

3.1 Syntax and Static Semantics

Loci’s syntax is shown in Fig. 6. For simplicity, we use an explicit annotation
@Context, instead of implicit annotations. Without loss of generality, we use a
“named form,” where the results of field and variable accesses, method calls
and instantiations must be immediately stored in a variable or field. For sim-
plicity, all rules have an implicit program P in which classes are looked up. We
use the right-associative viewpoint-adaptation operator ⊕ to expand the default
@Context annotation thus:

α1 ⊕ α2 c =
{

α1 c if α2 = @Context
α2 c otherwise α1 ⊕ α2 ⊕ α3 c = α1 ⊕ (α2 ⊕ α3 c)

For brevity, we assume that fields(c) = τ f where f are all fields in c and super
classes of c. We use the shorthand fields(c.f) = τ to say that field f in class c
has the type τ . For methods, we assume the existence of mtype(c.m) = τ → τ
and mbody(c.m) = (x, s;return x) where τ m(τ x){ s;return x } is declared
in the most direct superclass to c that declares m. We sometimes write (sub-∗)
to denote all rules starting with “sub” and (∗-var) for all rules ending with “var.”

We say that a program P is well-formed if all class definitions are well formed.
By construction, all class hierarchies are rooted in Object. For simplicity, Object

P ::= cd program

cd ::= α class c extends d { fd md } class declaration
fd ::= τ f field
md ::= τ m(τ x) { s;return y } method
s ::= s;s | skip | x = y .f | x = y | y .f = z | τ x | statement

x = new τ() | x = y .m(z) | x = start c()
τ ::= α c type
α ::= @Thread | @Shared | @Context annotations

E ::= [] | E[x : τ] local type environment

Fig. 6. Loci’s syntax. c, d are class names, f ,m are field and method names, and x , y , z
are names of variables or parameters respectively, where x 6= this. For simplicity, we
assume that names of classes, fields, methods and variables are unique. The special
variable ret and return only appears in the dynamic syntax and semantics.

9

is an empty class with no superclasses that is annotated @Thread. A user-defined
class is well-formed if it abides by (t-class).

(t-class)

fields(d) = fd2 methods(d) = md2 annote(d) = α2

∀m ∈ names(md1) ∩ names(md2). mtype(c.m) = mtype(d.m)
names(fd1) ∩ names(fd2) = ∅

α1 6= @Context (α1 = α2 ∨ d = Object) α1 ` fd1 α1 c ` md1

` α1 class c extends d { fd1 md1 }

Notably, subclassing and overriding must preserve annotations, overriding is not
supported, and @Context is not a valid class-level annotation.

(t-field)

` α1 ⊕ α2 c

α1 ` α2 c f

(t-method)

(α1 = @Thread ∧ α2 = @Context) ∨ α2 = @Shared
this : α2 c, x : τ ` s;E E(y) ≤ α2 ⊕ τ

α1 c ` τ m(τ x){ s;return y }

(t-field) uses the viewpoint-adaptation operator ⊕ on annotations and types.
α2 is the annotation on the field and α1 is the annotation of the declaring class
used if α2 is @Context. The class of the field must be valid with respect to the
resulting annotation. This is similar to σ-substitution found in ownership types
type systems and is used frequently in the formalism.

In (t-method), the type of this depends on the enclosing class. In a @Thread
class, this is @Context and otherwise @Shared. This is because @Thread classes
can be used to create both shared and thread-local instances.

Statements. The statements should be straightforward to follow for anyone
familiar with Java. Remember, x 6= this.

(t-sequence)

E ` s1;E1 E1 ` s2;E2

E ` s1;s2;E2

(t-skip)

E ` skip;E

(t-assign)

E(y) ≤ E(x)
E ` x = y;E

(t-select)

E(y) = α c
fields(c.f) = τ ′

α⊕ τ ′ ≤ E(x)
E ` x = y.f ;E

(t-update)

E(y) = α c
fields(c.f) = τ
E(z) ≤ α⊕ τ

E ` y.f = z;E

(t-decl)

x 6∈ dom(E)
E(this) = α c

E′ = E[x : α⊕ τ]
E ` τ x;E′

(t-select) and (t-update) applies ⊕ to the annotation on the target and the
field to possibly expand @Contexts. Note that (t-decl) replaces @Context with
the annotation of the current this (which may be @Context).

(t-new)

` τ τ ≤ E(x)
E ` x = new τ();E

(t-call)

E(y) = α c mtype(c.m) = τ → τ ′

E(z) ≤ α⊕ τ α⊕ τ ′ ≤ E(x)
E ` x = y.m(z);E

(t-fork)

mtype(c.run) = ε → τ
E(x) = @Shared c

E ` x = start c();E

10

Similar to how Java deals with threads, the start operation only works on classes
that have a 0-arity run method (denoted by ε parameter types).

Subtyping, Types. The subtyping relation ≤ is the transitive relation closed
under the rules below. annote(c) returns the annotation on the class c or @Thread
if c = Object.

(sub-direct)

α class c extends d · · ·
c ≤ d

(sub-trans)

c ≤ c′ c′ ≤ d

c ≤ d

(sub-self)

c ≤ c

(sub-annote)

` α c ` α d c ≤ d

α c ≤ α d

(type)

annote(c) = @Shared⇒ α = @Shared
` α c

By (sub-annote), subtyping must preserve annotations. Most importantly, though,
Object may be subclassed as both @Shared and @Thread.

3.2 Dynamic Semantics

We formulate Loci’s dynamic semantics as a small-step operational semantics.
See Fig. 7 for syntax. A Loci configuration H;T consists of a single heap H of
locations mapped to objects tagged to denote to what heap(let) they belong to
and a collection of threads. Each thread T has its own stack, plus a thread id
denoted ρ. An object belonging to the thread ρ will be tagged ρ in its second
compartment. We use % in the syntactic category ρ to denote the shared heap.
Thread-scheduling is modeled as a non-deterministic choice in (d-schedule). A
configuration with a thread scheduled to run is denoted H;T ;T . For convenience,
we write H(ι.f) as a shorthand for H(ι)(f) and H(ι.f) := v for H[ι 7→ o[f 7→ v]].
We denote the look-up of a non-existent field H(ι.f) = ⊥ (where ⊥ 6= v), which
can happen due to lazy creation of thread-local fields. The initial configuration
has the form []; (〈[], s;return x〉, ρ), i.e., there is only one thread on start-up, and
the initial stack frame and heap are empty. The relation (→) is the reduction
step on configurations.

H ::= [] | H[ι 7→ o] heap
T ::= (S, ρ) | (NPE, ρ) thread
S ::= ε | S 〈F, s〉 stack

F ::= [] | F [y 7→ v] stack frame
o ::= c(ρ, F) object
v ::= ι | null value

Fig. 7. Syntax for heaps, threads, stacks, frame, objects and values. For brevity, we
unify stack frame and object fields. To distinguish, we use f for fields and y for variables.

The rule (d-schedule) non-deterministically picks one thread for execution.
The rules (d-finish) and (d-dead) remove threads that are fully reduced from

11

the system. NPE is a thread that’s dead from a null-pointer error.

(d-schedule)

H;T T ′ T → H ′;T ′′

H;T T T ′ → H ′;T ′′

(d-finished)

H;T (〈F, return x〉, ρ) → H;T

(d-dead)

H;T (NPE, ρ) → H;T

Local variable declaration and assignment offer no surprises.

(d-assign)

F (y) = v T = (S 〈F [x = v], s〉, ρ)
H;T (S 〈F, x = y; s〉, ρ) → H;T T

(d-decl)

T = (S 〈F [x 7→ null], s〉, ρ)
H;T (S 〈F, τ x; s〉, ρ) → H;T T

(d-skip)

H;T (S 〈F, skip; s〉, ρ) → H;T (S 〈F, s〉, ρ)

We model thread-local variables as zero or more variables indexed by the thread
id ρ—a thread ρ accessing a @Thread field f returns the contents of the field fρ.

sel(ι, c.f,H, ρ) =

null if fields(c.f) = @Thread d ∧H(ι.fρ) = ⊥
v if fields(c.f) = @Thread d ∧H(ι.fρ) = v
v′ if H(ι.f) = v′

The predicate sel() returns the value of the request field, or, if the field is thread-
local, the value of the field indexed by the current thread.

(d-select)

F (y) = ι H(ι) = c(· · ·) sel(ι, c.f,H, ρ) = v T ′ = (S 〈F [x = v], s〉, ρ)
H;T (S 〈F, x = y.f ; s〉, ρ) → H;T T ′

Missing thread-local fields are given the value null. An alternative would be to
create a copy for every thread in the system, but the above solution felt somewhat
closer to the semantics of the ThreadLocal API, which calls initialValue() on
the first read of a field by a particular thread. Like reading, writing a @Thread
field updates the copy of the field indexed by the current thread’s id.

upd(ι, c.f,H, ρ, v) =
{

H(ι.fρ) := v if fields(c.f) = @Thread c
H(ι.f) := v otherwise

(d-update)

F (y) = ι H(ι) = c(· · ·) H ′ = upd(ι, c.f,H, ρ, F (z))
H;T (S 〈F, y.f = z; s〉, ρ) → H ′;T (S 〈F, s〉, ρ)

We have omitted constructors (see Sec. 4.1 for a discussion on how to deal with
them). Thus, a new instance is always thread-local and can subsequently be

12

placed either on the shared heap or in the current heaplet. This is decided by
the annotation of the target variable for the instantiation.

reg(α, ρ, ρ1) =

ρ if α = @Thread
ρ1 if α = @Context
% if α = @Shared

The predicate reg() “registers” a newly created instance with a certain thread.

(d-new)

H(F (this)) = d(ρ1, F1) ι is fresh names(fields(c)) = f
H ′ = H[ι 7→ c(reg(α, ρ, ρ1), f 7→ null)]

H;T (S 〈F, x = new α c(); s〉, ρ) → H ′;T (S 〈F [x 7→ ι], s〉, ρ)

If the target variable is @Context-annotated, the class is stored in the same heap
or heaplet as the current this. We use the special variable ret to capture return
values. The only assignment to ret is through a return which assigns the ret of
the underlying stack frame.

(d-return)

F (y) = v T = (S 〈F ′[ret 7→ v], s′〉, ρ)
H;T (S 〈F ′, s′〉〈F, return y〉, ρ) → H;T T

(d-call)

F (y) = ι F (z) = v H(ι) = c(· · ·) mbody(c.m) = (x′, s′;return y′)
F ′ = this 7→ ι, x′ 7→ v S′ = S 〈F, x = ret; s〉

H;T (S 〈F, x = y.m(z); s〉, ρ) → H;T (S′ 〈F ′, s′;return y′〉, ρ)

An invocation x = y.m() is rewritten into x = ret and the method’s body is
executed on a new stack frame eventually assigning ret as the result of a return.

(d-fork)

ι, ρ′ are fresh names(fields(c)) = f H ′ = H[ι 7→ c(%, f 7→ null)]
mbody(c.run) = (ε, s′;return y′) T = (〈[this 7→ ι], s′;return y′〉, ρ′)

H;T (S 〈F, x = start c(); s〉, ρ) → H ′;T T (S 〈F [x 7→ ι], s〉, ρ)

The (d-fork) operations adds a thread to the system and is a simplified union
of Java’s new and start. The new thread object is created on the shared area,
forcing its thread-local data to be stored either on the stack of the run method,
or in a thread-local field. Adding thread-local threads to the system would be
as simple as introducing a start operation that returns null.

For brevity, null-pointer exceptions kill the entire thread rather than propa-
gate an error through the execution. The semantics is effectively the same.

(d-select-npe)

H;T (S 〈F [y 7→ null], x = y.f ; s〉, ρ) → H;T (NPE, ρ)

13

(d-update-npe)

H;T (S 〈F [y 7→ null], y.f = z; s〉, ρ) → H;T (NPE, ρ)

(d-call-npe)

H;T (S 〈F [y 7→ null], x = y.m(z); s〉, ρ) → H;T (NPE, ρ)

3.3 Meta-Theory

Well-Formedness Rules We now present the rules for well-formed configura-
tions, heaps and stacks. Γ is the store-type and has the syntax Γ ::= ε | Γ [ι : τ].

tid(H, ι) =
{

ρ if H(ι) = c(ρ, F)
⊥ otherwise tid(T) =

{
ρ if T = (S, ρ)
ρ if T = (NPE, ρ)

In the following rules, we make use of the auxiliary function tid(T) that extracts
a thread’s id, and tid(H, ι), that looks up the thread id of an object on the heap.
(wf-config) states that a configuration is well-formed if there is a well-formed
store typing Γ which type the heap H and if all threads have distinct ids and
are well-formed.

(wf-config)

` Γ Γ ;H ` H tid(T) distinct ∀ (S, ρ) ∈ T . Γ ;H `ρ S

Γ ` H;T

(wf-Γ -0)

` []

(wf-Γ -1)

` Γ ` α c
α 6= @Context
` Γ [ι : α c]

(wf-thread-0)

Γ ;H `ρ []

(wf-thread-1)

Γ ;H `ρ S
Γ ;H;E `ρ F E ` s;E′

Γ ;H `ρ S 〈F, s〉

An object is well-formed if all its fields point to locations on the heap. Thread-
local objects must have the same id as the current thread or, otherwise, the id
of the shared heap. Note that @Context does not appear on types in Γ .

(wf-heap-ε)

Γ ;H ′ `ρ []

(wf-heap-shared)

Γ ;H ′ `ρ H Γ (ι) = @Shared c
fields(c) = E Γ ;H ′;E `% F

Γ ;H ′ `ρ H[ι 7→ c(%, F)]

(wf-heap-thread)

Γ ;H ′ `ρ H Γ (ι) = @Thread c
fields(c) = E Γ ;H ′;E `ρ F

Γ ;H ′ `ρ H[ι 7→ c(ρ, F)]

Due to the treatment of thread-local fields, rules for well-formed fields are a
bit more complex that usual for a Java-like language. (wf-field-ε) captures that
thread-local fields may not yet have been initialized.

(wf-field-ε)

Γ ;H;E `ρ []

(wf-field-null)

Γ ;H;E `ρ F E(f) = τ

Γ ;H;E `ρ F [f 7→ null]

(wf-field-thread-null)

Γ ;H;E `ρ F E(f) = τ

Γ ;H;E `ρ F [fρ′ 7→ null]

14

(wf-field-thread)

Γ ;H;E `ρ F E(f) = τ tid(H, ι) = ρ′ Γ (ι) ≤ τ

Γ ;H;E `ρ F [fρ′ 7→ ι]

(wf-field-shared)

Γ ;H;E `% F E(f) = @Shared c
Γ (ι) ≤ @Shared c tid(H, ι) = %

Γ ;H;E `ρ F [f 7→ ι]

(wf-field-context)

Γ ;H;E `ρ F E(f) = @Context c
Γ (ι) ≤ α c tid(H, ι) = ρ

Γ ;H;E `ρ F [f 7→ ι]

Notably, @Shared fields point to objects on the shared heap, @Context fields point
to objects on the same heap(let) as the current this, and @Thread fields have ≥ 0
copies subscripted with the same thread id as the object they point to.

For stack frames, a pointer in a @Shared field points to an object on the
shared heap and a pointer in a non-shared field points to an object on the same
heap(let) as the current this.

(wf-frame-0)

Γ ;H `ρ [], []

(wf-frame-1)

Γ ;H `ρ E,F
tid(H, ι) = ρ′ Γ (ι) ≤ α c

α = @Shared⇒ ρ′ = %
α 6= @Shared⇒ ρ′ = ρ

Γ ;H `ρ E[y : α c], F [y 7→ ι]

(wf-frame-2)

Γ ;H `ρ E,F

Γ ;H `ρ E[y : τ], F [y 7→ null]

Invariants Informally, Loci enforces the following property:

A thread ρ can only access objects in heaplet ρ or on the shared heap %.

We formulate this in two theorems, the first of which says that pointers in
variables on a stack frame in a thread ρ either point to objects in ρ or in %,
and the second that evaluating a field access in thread ρ results in a pointer to
either an object in ρ or in % (or is a null-pointer).

Theorem 1. Local variables point into shared heap or current heaplet. If Γ ;E `
H;T (S 〈F, s〉, ρ), then ∀ι ∈ rng(F). tid(H, ι) ∈ {%, ρ}.

Proof. Follows by straightforward induction on s. (wf-frame-1) and (wf-frame-

2) are key. ut

Theorem 2. Field accesses yield pointers to shared heap or current heaplet.
Let s be a field access x = y.f . If Γ ;E ` H;T (S 〈F, s〉, ρ), H;T (S 〈F, s〉, ρ) →
H ′;T ′ (S′ 〈F ′, s′〉, ρ), and F ′(x) = ι, then tid(H ′, ι) ∈ {%, ρ}.

Proof. The proof is by derivation on Γ ;E ` H;T (S 〈F, x = y.f〉, ρ) relying on
the fact that ρ is threaded through a computation and that @Context-annotated
fields point to the heaplet of its enclosing object. By the rules for well-formed

15

configurations, heaps and fields, H(F (y).f) = ι and fields(c.f) = α c′ implies
tid(H, ι) = ρ′ s.t. (a) α = @Shared implies ρ′ = %, (b) α = @Context implies
ρ′ = ρ′′ s.t. tid(H(F (y))) = ρ′′, and (c) α = @Thread implies f = fρ∧ρ′ = ρ. Cases
(a) and (c) immediately satisfy the theorem and case (b) follows immediately
from Theorem 1 that gives ρ′′ ∈ {ρ, %}. ut

Type Soundness We prove type soundness in the standard fashion of progress
plus preservation [33]. In this context, preservation means that reduction does
not invalidate the store typing.

Theorem 3. Preservation. If Γ ` H;T , and H;T → H ′;T ′, then there exists
a Γ ′ s.t. Γ ′ ` H ′;T ′.

Proof. The proof is straightforward by structural induction. There are no sur-
prising cases. ut

Theorem 4. Progress. If Γ ` H;T , then there exists a reduction such that
H;T → H ′;T ′.

Proof. The proof is straightforward by structural induction on the shape of T
where most cases are immediate. The slightly more intricate cases, (t-select),
(t-update) and (t-call) are all guarded by (∗-npe) versions of the rule that deal
with null-dereferencing. By (wf-heap-∗) and (wf-field-∗), a well-formed object
c(ρ, F) has all non-@Thread fields in F . By (select-first-thread), accessing an
“undefined” thread-local field does not get stuck. Last, the only ways in which
(d-new) or (d-fork) could get stuck is if we cannot produce fresh ι’s or ρ’s,
which is not modeled by our system. ut

4 Loci for Eclipse

We have implemented Loci as an Eclipse plug-in. The plug-in supports most of
Java, modulo generics, checking of native code, and reflection. The tool imple-
ments static checking of @Shared, @Thread, and the implicit @Context annotation.
Currently, the tool gives a warning rather than an error when it detects a viola-
tion. Fig. 8 shows how @Thread fields are desugared into uses of the ThreadLocal
API before compilation. The tool ignores primitive types and immutables, like
strings and boxed primitives. To minimize the annotation burden, in a @Thread
class, @Context is the implicit default annotation for a type of @Thread class, and
@Shared for a type of @Shared class. In a @Shared class, the implicit annotation
is @Shared. Notably, there is no keyword for @Context, it is only used implic-
itly. While it would have been more reasonable to default unannotated classes
to @Thread, this would have had the drawback of requiring invasive changes to
legacy code. To give existing Java programs a valid Loci interpretation, unanno-
tated classes are implicitly @Shared, with the exception of Object.

16

1 @Thread class Foo {
2 @Thread Foo foo = null;

3

4

5

6

7

8 Object x;

9 void bar() {
10 @Thread Foo f = foo;

11 foo = f;

12 }

13 }

1 @Thread class Foo {
2 @Thread ThreadLocal<Foo> foo =

3 new ThreadLocal<Foo>() {
4 Foo initialValue() {

5 return null;
6 }

7 };

8 Object x;

9 void bar() {
10 @Thread Foo f = foo.get();

11 foo.set(f);

12 }

13 }

Fig. 8. Sugared view and corresponding desugared view of a @Thread class. “Ensugar”
and “desugar” buttons in the tool allows the user to switch back and forth between
these views. Notably, @Thread-annotated local variables (f above) do not need to be
implemented using the ThreadLocal API.

4.1 Extending Loci to Full Java

In this section, we address some of the interplay with Java not visible from the
formalization, due to simplifications or Java conventions.

Anonymous classes. Loci fully supports anonymous classes. Anonymous classes
automatically inherit the annotation of the superclass or interface. In the case of
an interface without a class-level annotation, Loci currently requires the resulting
instance to be stored immediately in a local variable and infers the annotation
from the variable’s type. Ambiguous instantiations of this kind could be solved
by annotating the instantiated type.

Arrays. Loci supports three kinds of arrays (of any dimension):

1. Thread-local arrays of pointers to shared objects or primitives
2. Thread-local arrays of pointers to thread-local objects
3. Shared arrays of pointers to shared objects or primitives

If Foo and Bar are a @Shared respectively a @Thread class, then @Thread Foo[]
is an array of the first kind, @Thread Bar[] the second, and @Shared Foo[] and
@Shared Bar[] are of the third kind. The reason why @Shared Bar[] is a shared
array of shared objects rather than an shared array of thread-local objects is
because this case can be easily modeled by @Thread Bar[]. This frees @Shared
Bar[] up to allow using Bar as a shared class in @Shared arrays. When using
array initializers, Loci will inspect the annotations on the values used to initialize
the array to infer whether the compartments of the array should be @Thread or
@Shared, similar to constructor arguments in instantiation.

17

Interfaces. Unless explicitly annotated, we treat Java interfaces as implicitly
annotated @Context, even on the class level (this is supported in the tool but
omitted from the formalism since it does not deal with interfaces). When imple-
mented, we apply the ⊕ operator using the annotation of the implementing class
to get the annotation to which the implementing class must correspond. This
allows us to reuse interfaces across different classes with different thread-local
behavior.

Constructors and Instantiation. As @Shared classes are semantically equiva-
lent to Java classes, their constructors require no special treatment. For @Thread
classes, the story is different. Modulo constructor arguments, it is easy to see
that a @Thread class instance constitutes a “free” value. The type of this is
@Context SomeClass and as the types of static fields and methods must use ei-
ther @Shared or @Thread, the class is effectively prevented from leaking itself. If a
class “uses” @Context to annotate types of parameters to its constructor, we can
derive the annotation of the new instance by looking at how these parameters
are instantiated. If a new is only valid if the instance was shared (i.e., it binds a
@Shared argument to a @Context parameter), the new object lives in the shared
heap and the result type of the instantiation is @Shared. If @Context parameters
are bound only to @Context, the resulting type is @Context. If both bindings are
required, the instantiation is invalid as the object’s type would have to be both
@Shared and @Thread.

Inner and Nested classes. @Shared classes can have nested @Thread classes and
vice versa. The inverse poses a problem, though, as the nested class instance has
access to the enclosing instance, which could be thread-local. For this reason, Loci
only allows instantiating @Shared inner classes inside non-thread-local instance.
For example, given

@Thread class Foo { @Shared class Bar { } }
@Thread Foo f1;

@Shared Foo f2;

Foo f3;

we are allowed to do f2.new Bar() but not f1.new Bar() as the resulting shared
instance would break thread-locality of the object in f1. Naturally, f3.new Bar()
is only allowed if we can determine that f3 is shared.

Nested classes can be annotated @Thread and @Shared just like regular classes.
They can access static variables of the enclosing classes.

Static Fields, Blocks and Methods. In static context, the implicit anno-
tation is @Shared rather than @Context. Static fields and variables can still be
@Thread, but never @Context. The downside of this design is that static meth-
ods used to implement pure functions can never manipulate @Context data (see
Sec. 5).

Generics and Collections. As stated above, Loci does not yet support Java
generics. The reason is that Java does not (yet) support annotations on type

18

parameters. Once Java does, extending Loci to work with generics is straight-
forward and will mostly follow the style of [28]. On the downside, support for
generics will require the introduction of additional annotations to our system to
serve as “annotation parameters.” The reason is to enable expressing that the
annotations on two different types should be bound to the same annotation.

Java’s Thread API. As we saw in Fig. 1, Thread is a shared class. The same
holds for Runnable. This is natural, since instances of both will (potentially) be
shared between at least two threads. Rather than using thread-local fields in a
Thread object, a programmer should insert an extra level of indirection pointed
to by a @Thread local variable in the run() method. (This pattern emerged in
our evaluation.) As a result of these default annotations, Loci works naturally
with Java ThreadPools. Java’s InheritableThreadLocal also works well with the
annotations as inherited values are fresh thread-local copies for the new thread.
Extending Loci to support InheritableThreadLocal is straightforward.

5 Evaluation of Type System Design

To evaluate the type system design and our defaults, we have annotated parts
of the JavaGrande benchmark and Lucene Search from the DaCapo Benchmark
suite [5]. We have also implemented an inferencer for our system. The results are
shown in Tab. 2. In short, they show us that the design of the Loci type system
is largely compatible with how Java code is written.

Tab. 2 shows our results from annotating large chunks of Java code. We
used code coverage tools to make sure we annotated parts of the code that was
actually being executed. We also annotated parts of Xalan, a ≥100 000 LOC
XSLT processor, but this work is unfinished at the time of writing. As is visi-
ble from the table, the number of annotations is small—80 annotations in total
for 44 245 LOC, which is less than 1 annotation per 500 LOC. The annotation
of Lucene Search was driven by the desire to only annotate the parts of the
code that execute as part of thread-local computation and leave the rest of the
code unannotated. We were able to annotate 19 classes as @Thread that per-
form thread-local computation inside instances of IndexReader. Due to lack of
an annotated Java API, some classes could not be annotated without getting
warnings from the Loci tool, notably the index reader itself. Most notably, both
classes stored in thread-local fields in the original source (TermsVectorReader
and SegmentTermEnum) could be annotated @Thread. The two thread-local fields
in Lucene Search in Tab. 2 were uses of ThreadLocal that were there from the
start and none were added. The two key reasons why a class could not be anno-
tated @Thread is because it stores itself in a hash map or extends vector. Both
these problems can be solved by annotating the standard library. Raytracer is a
much smaller application (only 1496 LOC). Here, all classes could be annotated
@Thread. There were no uses of ThreadLocal to begin with, and none were added.

Though we have not annotated the entire DaCapo suite, we wanted to see
what fraction of objects are effectively thread-local. To measure this, we instru-
mented revision 15.182 of Jikes RVM [21] to report the fraction of live objects

19

LOC Classes @Thread @Shared Default

Raytracer 1496 16 16 0 0

Lucene Search 42749 285 19 0 266

Total 44245 301 35 0 266

Inferred Classes

@Thread 5996

@Shared 1289

Total 7285

@Thread Annotations @Shared Annotations

Fields Params Returns Vars Fields Params Returns Vars

Raytracer 0 0 0 1 1 1 1 1

Lucene Search 2 0 4 5 0 20 0 9

Total 2 0 4 6 1 21 1 10

Average Thread-locality Rate

Apache Lucene
ANTLR BLOAT Eclipse FOP HSQLDB Jython Index Search PMD Xalan

Objects 79% 82% 63% 78% 88% 77% 78% 74% 83% 66%

Bytes 71% 77% 64% 76% 85% 73% 71% 51% 81% 69%

Table 2. Results from experiments with annotating Java programs with Loci. The up-
per right table shows results from applying a conservative analysis to infer annotations
to GNU classpath. The bottom shows results of dynamic analysis for DaCapo bench-
marks [5]. We measure both the average rate at which objects are thread-local, and
the average number of bytes that belong to thread-local objects. In the entire DaCapo
suite, 69% of all objects are thread-local.

that have been used from multiple threads. Detecting object accesses was done
using a read barrier. These measurements also include objects used by the VM,
which itself is heavily multi-threaded, hence even for single-threaded benchmarks
like ANTLR, BLOAT, and others, the rate is not 100%. As Tab. 2 shows, all
benchmarks have at least half of their heaps occupied by thread-local objects—
including heavily multi-threaded ones like Lucene Search. Perhaps unsurpris-
ingly, our results show that small objects tend to be more likely to be thread-
local, as evidenced by the rate of object thread-locality being higher than the
rate of heap usage by thread-local objects.

Class-Level Annotation Inference. To further test our assumption that most
classes can be annotated @Thread, we implemented a conservative backwards-
flow analysis to detect leakage of this. Classes that could leak this, or ex-
tended @Shared classes, were marked @Shared. The remaining classes were marked
@Thread. Applying the analysis on the GNU Classpath version of the Java stan-
dard API, 82% of all classes could be annotated @Thread, notably all collection
classes. For simplicity, we assumed that native code did not leak this. Assuming
native code always leaks, the number is 77% and e.g., all collection classes are
shared because of sparse uses of native code in some collection implementations.
We have also used our Jikes RVM instrumentation to check that all objects an-

20

notated thread-local were indeed accessed by a single thread, and we found that
this was the case. Thus, it seems that our implementation is correct.

We now briefly report on the most important realizations from annotating
the programs.

Static Methods. Our experiments with Loci shows that our simple defaults-to-
@Shared approach for static methods caused problems in many cases where static
methods were used as global functions. For example, the Vec class in Raytracer,
frequently uses methods like this:

public static Vec sub(Vec a, Vec b) {
return new Vec(a.x - b.x, a.y - b.y, a.z - b.z);
}

Since the a and b in the code about would be @Shared by default from being in
a static context, any thread-local vectors are precluded from using this purely
functional method. The simple solution for this problem was to simply make
these methods instance methods, which was a simple refactoring, but an annoy-
ing one. Similar refactorings were done for Lucene Search as well. In the spirit of
simplicity, a possible solution to this problem is to allow explicit uses of @Context
(they must be explicit to preserve all-shared semantics of unannotated Java pro-
grams) on parameters to static methods. The existing type system would prevent
leakage as is. A more general but less lightweight solution is a parametric ap-
proach using “annotation parameters.” This also has use for the problem with
equals methods.

Exceptions. The Xalan benchmark uses exceptions to propagate broken XML
nodes to a problem reporter. As Exception defaults to shared in our system, this
caused a problem for making the XML parsing a thread-local computation as
thread-locality would be lost for a broken node wrapped in a shared exception.
This practice, and the fact that exceptions cannot propagate into another thread
short of being stored on the heap, caused us to rethink this default. We are
currently investigating the possibility of annotating Throwable and its subclasses
as @Thread and the default annotation on exceptions will be @Context.

Equals Methods. In a @Thread class C, the type of this is @Context C. This
automatically prevents the leaking of this into @Shared variables, but there are
also downsides. Consider the typing of Java’s equals method. If the parameter
to equals has type @Context, then a @Thread class cannot pass this to the equals
of a shared object, nor vice versa. This turned out to be a rare problem and
occurred only twice in Lucene and was solved by ignoring the warnings after
having manually inspected the code. Furthermore, we can only compare objects
living in the same heap(let), which is unfortunate.

A flexible solution to this problem is supporting annotation-polymorphic
methods1. This also solves problems with static methods discussed above. An
1 Since Loci only has one annotation per type, this would not break polymorphism as

is the case for full-blown ownership types systems, see [35].

21

1 @Thread class Foo {
2 @Thread Foo foo = null;

3 @Thread Foo synchronized m1() {
4 this.m2();
5 if (foo != null) m1();
6 return foo;
7 }

8

9

10

11

12

13

14 synchronized void m2() {
15 this.m1();
16 }

17

18

19

20 }

1 @Thread class Foo {
2 @Thread ThreadLocal<Foo> foo = ...

3 @Thread Foo synchronized m1() {
4 this.m2();
5 if (foo.get() != null) m1();
6 return foo.get();
7 }

8 @Thread Foo Shadow_m1() {

9 this.Shadow_m2();
10 if (foo.get() != null)
11 Shadow_m1();

12 return foo.get();
13 }

14 synchronized void m2() {
15 this.m1();
16 }

17 void Shadow_m2() {
18 this.Shadow_m1();
19 }

20 }

Fig. 9. “Ensugared” and “desugared” view of a class with synchronized methods.
Desugaring of line 2 is omitted since it is shown in Fig. 8.

alternative solution is to use a different equals method for the three possible
combinations. As Java does not allow dispatching on annotations, these methods
must be differently named, but since which method to use can be statically
determined, calls to equals can be automatically rewritten under the hood by
the tool to use the right version, and the different equals methods automatically
inferred from the @Shared case. Notably, unless we allow @Context to be used
explicitly in @Shared classes, receiver and argument on equals calls on @Shared
receivers with @Context arguments would have to be switched.

5.1 Removing Unnecessary Synchronization

For flexibility for library classes, @Thread classes can be used to create both
shared and thread-local objects. This requires extra work to elide locks in Loci.
To this end, we introduce a “shadow method,” a duplicate of a method where
synchronization on @Context objects is removed. Calls on thread-local receivers
will call shadow methods, prefixed Shadow if they exist. In shadow methods, this
is thread-local and thus all @Context variables are too. Loci creates these methods
automatically and transparently. Fig. 9 shows the “ensugared” (standard view)
and the “desugared” view of a piece of code. We have implemented this scheme
in Loci and tested it on our annotated programs. Without sufficiently annotated
Java standard libraries, we will not see any measurable performance benefits
due to default-to-@Shared. For example, the IndexReader class in Lucene Search,

22

which would be key to avoid a fair amount of synchronized methods calls, cannot
be annotated @Thread due to uses of library use in its methods and methods of
its subclasses.

6 Related Work

Domani et al. [17] propose thread-local heaps where each thread is given it own
chunk of memory in which to allocate objects. The goal is to remove locking from
the GC for thread local objects. They use a dynamic analysis to track thread-
locality and do not enforce it. Several researchers have employed compile-time
escape analysis to identify local and global objects [6, 7, 10, 32, 11]. These pro-
posals target compiler optimizations (e.g., the removal of unnecessary synchro-
nization) and memory management, and do not support static checking of pro-
grammer intentions with respect to thread-locality. Currently, JVMs performs
similar analyzes under the hood (see e.g., [8, 20]), but cannot enforce correct
usage of ThreadLocal or does not give any feedback to the programmer to help
verify her programs. Recently, Flanagan et al. [18] extended AtomicJava [19]
with support for thread-local data for full-on Java. They target method atom-
icity and their system is powerful and distinguishes between five different kinds
of atomicities. Their system is more powerful than ours and allows any object
to act as a guard, whereas we only allow this to act as a guard for fields. As
a result, their system is more complicated and comes at the price of additional
complexity and annotation overhead.

Loci is simple ownership type system [24, 15]. Several approaches using own-
ership types for concurrency control have been proposed [4, 9, 30, 16, 14]. None
of these systems use a thread-as-owners approach, nor focuses on thread-local
data. Guava [4] presents as an informal collection of rules which would require a
significantly more complex type system than the one we present here. Stream-
Flex [30] use a minimal notion of ownership, with little need for annotations,
to simplify memory management in a real-time setting. Cunningham et al. [16]
employ Universe Types to “carve up a heap” for safe locking. Their system is
similar to ours in that it is based on a simple ownership system [23], but fo-
cuses on eliminating data races rather than checking thread-locality. Joëlle [14]
proposes a minimal ownership types system in the active objects setting that
guarantees that only the thread of an active object will access its representation.
The system is built on a different set of principles—sharing is impossible, and
all inter-thread communication must be asynchronous or the thread-locality as-
sumption is void. Kilim [31] gives thread-locality through a linear type system
for actor-style programming in Java. Kilim replaces copying by transfer of own-
ership. Sadly, Kilim’s requirement that unique messages be tree-structured (due
to linearity) forces regular object structures used as internal representations of
communicating actors to be cloned into trees, at least on the sender’s side, before
being transferred.

23

7 Conclusion

We have presented Loci, a simple type system for thread-local data in Java
and Java-like languages. We have shown its formal semantics, and stated and
proven its crucial properties. Furthermore, we have described our realization of
Loci as an Eclipse tool and described how the Loci annotations apply to full-
on Java. Experiences with using Loci on known benchmarks showed that the
system is compatible with current Java practices, but that further extensions
are needed. We will continue to develop Loci while continuing the balance act
between simplicity of the annotations, usefulness and legacy integration.

In future work we intend to explore synergies of thread locality information
with other optimizations. If a dynamic analysis can make up for its overhead, we
envisioning allowing “casts” on the annotations. This will allow a simpler system
but also open up for run-time errors. We will also extend Loci to support generics
and experiment with the practical usefulness of adding a @Free annotation.

Acknowledgments. We thank the ECOOP reviewers for their suggestions
which helped improve the presentation of this paper. The impetus for this work
came from discussion with Doug Lea. The paper benefited from comments and
discussion with Johan Östlund. The authors were partially supported by grants
NSF CPA 0811631, NSF CPA 0811691 and NSF 0720652.

References

1. Java theory and practice: Synchronization optimizations in mustang. http://www-
128.ibm.com/developerworks/java/library/j-jtp10185/.

2. J. Aldrich, C. Chambers, E. G. Sirer, and S. J. Eggers. Static analyses for elim-
inating unnecessary synchronization from Java programs. In SAS, pages 19–38,
1999.

3. D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: Featherweight
synchronization for Java. In PLDI, pages 258–268, 1998.

4. D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data
races. In OOPSLA, pages 382–400, 2000.

5. S. M. Blackburn and others. The DaCapo benchmarks: Java benchmarking devel-
opment and analysis. In OOPSLA, pages 169–190, 2006.

6. B. Blanchet. Escape analysis for object-oriented languages: application to Java.
In OOPSLA, pages 20–34, 1999.

7. J. Bogda and U. Hölzle. Removing unnecessary synchronization in Java. In OOP-
SLA, pages 35–46, 1999.

8. S. Borman. Sensible sanitation – understanding the IBM Java garbage. IBM
DeveloperWorks, August 2002.

9. C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In OOPSLA, pages 211–230, 2002.

10. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis
for Java. In OOPSLA, pages 1–19, 1999.

24

11. J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff. Stack
allocation and synchronization optimizations for Java using escape analysis.ACM
Trans. Program. Lang. Syst., 25(6):876–910, 2003.

12. D. Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, Australia, 2001.

13. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In ECOOP,
pages 176–200, 2003.

14. D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen. Minimal Ownership for
Active Objects. Technical Report SEN-R0803, CWI, 2008.

15. D. G. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
In OOPSLA, pages 48–64, 1998.

16. D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe Types for Race
Safety. In VAMP 07, pages 20–51, Sept. 2007.

17. T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis, E. Petrank, and D. Sheinwald.
Thread-local heaps for Java. In ISMM, pages 76–87, 2002.

18. C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static
checking and inference for Java. ACM TOPLAS, 30(4):1–53, 2008.

19. C. Flanagan and S. Qadeer. A type and effect system for atomicity. In PLDI,
pages 338–349, 2003.

20. B. Goetz. Java theory and practice: Urban performance legends, revisited. IBM
DeveloperWorks, September 2005.

21. Jikes RVM homepage. http://jikesrvm.org/.
22. P. G. Joisha. Compiler optimizations for nondeferred reference: counting garbage

collection. In ISMM, pages 150–161, 2006.
23. P. Müller. Modular Specification and Verification of Object-Oriented Programs,

Springer, 2002.
24. J. Noble, J. Vitek, and J. Potter. Flexible Alias Protection, In ECOOP, pages

158–185, 1998.
25. OpenJDK. http://openjdk.java.net/.
26. J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership, uniqueness and

immutability. In TOOLS, 2007.
27. F. Pizlo, A. L. Hosking, and J. Vitek. Hierarchical real-time garbage collection. In

LCTES, pages 123–133, 2007.
28. A. Potanin. Generic Ownership—A Practical Approach to Ownership and Confine-

ment in OO Programming Languages. PhD thesis, Victoria University of Welling-
ton, 2007.

29. K. Russell and D. Detlefs. Eliminating synchronization-related atomic operations
with biased locking and bulk rebiasing. In OOPSLA, pages 263–272, 2006.

30. J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: High-throughput
Stream Programming in Java. In OOPSLA, pages 211–228, 2007.

31. S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for Java. In ECOOP,
pages 104–128, 2008.

32. B. Steensgaard. Thread-specific heaps for multi-threaded programs. In ISMM,
pages 18–24, 2000.

33. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994.

34. T. Wrigstad. Ownership-Based Alias Management. PhD thesis, Royal Institute of
Technology, Kista, Stockholm, 2006.

35. T. Wrigstad and D. Clarke. Existential owners for ownership types. Journal of
Object Technology, 4(6):141–159, 2007.

25

