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Abstract

Memory management is a critical issue for correctness and perfor-
mance of hard-real time systems. Java environments usually incor-
porate high-throughput garbage collection algorithms, but these
algorithms can induce pause times in excess of 100 milliseconds.
This is not acceptable for a real-time system. Two approaches for
remedying this problem are being investigated. The pauses times
can be bounded with a real-time garbage collector, or means to
program around the collector entirely can be provided, as it done
in the Real-time Specification for Java with its Scoped Memory in-
terface.

This paper presents the first side-by-side empirical evaluation
of the impact of memory management regimes on realistic real-
time applications. We present usability arguments as well as a de-
tailed performance comparison of scoped memory and real-time
garbage collection. Experience with medium sized systems sug-
gests that while programming with Scoped Memory is error prone,
it provides substantially better throughput. We have observed a
throughput reduction of up to 37% and, in the worst-case, an 80%
latency penalty for real-time garbage collection.

1. Introduction

Multi-million line systems are being developed in Java for
avionics, shipboard computing and simulation. A key at-
traction of the Real-time Specification for Java (RTSJ) [8]
for such systems is that it makes it possible to develop ap-
plications that mix hard-, soft- and non-real-time tasks in
the same environment and in a memory-safe way. Unfortu-
nately, these advantages come at the expense of predictabil-
ity. The garbage collection algorithms, orgarbage collec-
tors (GC), used for automatic memory management typi-
cally require applications to be interrupted for hundreds of
milliseconds. Such pauses are not acceptable in real-time
systems. There are two approaches to address this critical
problem. One is to provide worst-case bounds on pause
times and utilization of the garbage collection algorithm
with so-calledreal-time garbage collectors(RTGC). The
other alternative is to program around the garbage collector
with the RTSJ’sscoped memoryAPI. Scoped memory al-
lows real-time tasks to allocate data in regions of memory
that can be reclaimed in bounded time. To guarantee mem-
ory safety, the virtual machine monitors every access to
memory (loads and stores of object references) performed
by programs and throws an exception if a program performs
a memory operation that may lead to an error.

The goal of this paper is to provide the first detailed
analysis and discussion of the tradeoffs between real-time
garbage collection and scoped memory for real-time Java.
Such an analysis is crucial for practitioners to make an in-
formed choice as memory management regimes have pro-
found implications on the design and architecture of appli-
cations as well as their performance profile. To date, the de-
bate has been polarized and based on folklore rather than
on hard data. The contributions of this paper are thus: (I)
The first open sourceimplementation of scoped memory
and real-time garbage collection in the same Java virtual
machine. Our real-time garbage collector is a time-based
collector based on the state-of-the-art Metronome collec-
tor [2]. We also implemented a traditional copying col-
lector to provide a throughput baseline [5]. (II) A discus-
sion of the software engineering benefits and dangers of
real-time garbage collection and scoped memory. This ex-
tends our previous work on design patterns and idioms for
scoped memory [2]. (III) An empirical evaluation of mem-
ory management based on two realistic RTSJ applications:
a collision detector (10KLoc) and a real-time CORBA ORB
(202KLoc). We also use the industry standard SpecJVM98
benchmark suite to study throughput of RTGC. We have ob-
tained data on pause time, latency and memory usage of the
competing techniques.

This work has been performed within the context of
Ovm, a high-performance customizable virtual machine1

which has been successfully deployed in on a ScanEagle
UAV in a collaboration with the Boeing Company [4].

2. Background
2.1. Scoped Memory

In the RTSJ, storage for an allocation request (i.e.new
in Java) performed by a real-time task is serviced differ-
ently from standard Java allocation. The RTSJ extends the
Java memory management model to include dynamically
checked regions known asscoped memory areasrepre-
sented by subclasses ofScopedMemory. A memory area is
an allocation context that provides a pool of memory shared
by threads executing within it. Individual objects allocated
in a memory area cannot be deallocated; instead, an entire
area is torn down as soon as all threads exit it. The RTSJ
defines two distinguished scopes:immortalandheapmem-

1 Measurements of the latest version of Ovm show that its mean perfor-
mance in the SpecJVM98 suite is 16% better than Hotspot 1.5 server.
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Figure 1. Memory Management in the Real-time Specification for Java.

ory, respectively for objects with unbounded lifetimes and
objects that must be garbage collected. Two new kinds of
threads are also introduced:real-time threads that may ac-
cess scoped memory areas (RealtimeThread); andno heap
real-timethreads (NoHeapRealtimeThread), which are real-
time threads protected from garbage collection pauses. Dy-
namically enforced safety rules check that a memory scope
with a longer lifetime does not hold a reference to an ob-
ject allocated in a memory scope with a shorter lifetime.
This means that heap memory and immortal memory can-
not hold references to objects allocated in scoped memory,
nor can a scoped memory area hold a reference to an ob-
ject allocated in an inner (more deeply nested) scope. The
memory model is illustrated in Fig. 1. Memory areas pro-
vide methods likeenter(Runnable) that permit application
code to execute within a scope. Using nested calls, a thread
may enter multiple scopes, dynamically building up a scope
hierarchy. Misuse of these methods is punished by dynamic
errors; e.g. aScopedCycleException is thrown when a user
tries toenter() a ScopedMemory that is already accessible.
IllegalAssignmentError andMemoryAccessError are thrown
on attempted violations of the memory access rules. Ref-
erence counting onenters ensures that all the objects allo-
cated in a scope are reclaimed (andfinalized) when the last
thread leaves that scope.

2.2. Real-time Garbage Collection

For garbage collection (GC) to be used in hard real-time ap-
plications, reasonable worst-case bounds must be provided
for: (a) GC pause times, (b) throughput, and (c) memory
usage. Because events that arrive while the collector is op-
erating cannot be handled until the collector yields, pause
times must be bounded. Further, the mutator (i.e. user code)
must not be interrupted too frequently. In particular, the ef-
fect on throughput must not be so severe as to prevent the
application from handling events in a timely fashion. Fi-
nally, all memory allocation requests must succeed. This re-
quires finding a rate at which to run the collector to make
it keep up with allocation. Work on real-time collection can

be traced back to Baker’s incremental copying collector [3].
The central idea behind Baker’s work is decreasing the in-
trusiveness of a collector by piggy-backing work onto mu-
tator operations. To ensure consistency, a small piece of
code, called a read barrier, is inserted by the compiler be-
fore every memory read to perform copying, and the alloca-
tion code is modified to perform a bounded amount of col-
lection work. The worst-case in a program using Baker’s
collector involves a copy operation upon every read, and a
(large) unit of collection work on every allocation. Hence,
even though individual pauses are small, the worst case ex-
ecution time of an allocation makes Baker’s collector un-
suitable for hard real-time. Put another way, the GC fails to
bound its impact on throughput. Baker’s collector is said to
be work-based, in the sense that work done by the muta-
tor leads to work by the collector. Bacon et al. [2], Henriks-
son [13], and Detlefs [12] investigate a different approach
to real-time collection. In theirtime-basedsystems, the col-
lector interleaves with the mutator at regular intervals. Con-
stant time read (or write) barriers are still needed to main-
tain consistency, but allocation can be made constant-time.
The worst-case bounds on execution time in the mutator be-
come more realistic, allowing the collector to be used in
hard real-time systems.

3. Programming model
This section overviews memory management issues in real-
time Java applications.

3.1. Software Architecture

The software architecture of scoped memory programs tend
to reflect the scoped memory hierarchy in different ways.
A memory area is typically used to contain objects with
roughly equivalent lifetimes. The use of nested scopes is
needed if within a particular task, there is a subtask that
repeatedly allocates data with non-overlapping lifetimes.
Nested scopes complicate reasoning about correctness –
thus when possible they are best avoided. In general, it is
true that the code that has to run in scoped memory requires
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greater care to prevent errors. Thus it is not unusual to find
versions of a class specialized for use in scoped memory
– and possibly specialized for a particular arrangement of
scoped memory areas.

Programming with scoped memory entails a loss of
compositionality. By this we mean that components, when
tested independently, may work just fine, but they will break
when put in a particular scoped memory context. This is be-
cause scoped memory adds an extra dimension –whereeach
object has been allocated – that complicates reasoning about
program correctness. In our previous work, we outlined a
number of design patterns and idioms for programming ef-
fectively with scoped memory [23]. Following these guide-
lines simplifies RTSJ development. The RTZen system is
a good example of a large open source real-time Java pro-
gram entirely written with scoped memory [16].

Real-time garbage collection, on the other hand, does
not require significant changes to the programming devel-
opment methodology. Just like in standard Java, it is impor-
tant to make sure that programs don’t leak memory, but be-
sides this, no particular care needs be taken and there is thus
no need to develop specialized versions of classes.

3.2. Scoped Memory Hazards

We overview the dangers of programming with scoped
memory and give recommendations for improved safety.

Hidden Allocation.A surprisingly frequent source of mem-
ory errors is unexpected allocation. For instance, calling
the put() method of a hash table may allocate a bucket in
the current memory area. If the current area is a child of
the hash table’s area, an exception will be thrown. Prevent-
ing such phenomena is difficult if the programmer is not
aware that a method is allocating. There are two solutions:
one is toharden allocationat the callee or delegate mem-
ory area selection to the caller. The former implies alloca-
tion be safe irrespective of the current allocation context.
For theput() method this means discovering where the ta-
ble was allocated and requesting, reflectively, allocation in
the same context:

public void put(Object key, Object value){
...
MemoryArea ma = MemorArea.areaof(this);
Bucket b =

(Bucket) ma.newInstance(Bucket.class);

Of course, this style of programming quickly becomes
cumbersome – especially if the objects being created are
themselves allocating. The alternative is to delegate the se-
lection of allocation context to the caller, but this requires
that allocation be made part of the interface of all compo-
nents.

Store. Every assignmenttgt.f=src is checked by the VM to
ensure that the lifetime oftgt is shorter or equal to that of
src. Typically, errors occur when the program is not fully
aware of the allocation context of all the objects it is manip-
ulating.

Load. The RTSJ tries to protectNoHeapRealtimeThreads
from GC interference. The family of copying GC algo-
rithms [15] often assumes that objects in the process of be-
ing copied are not accessible to the mutator. Thus the GC is
free to temporarily corrupt the state of the heap, as long as
everything is patched up when the program restarts. Since a
NoHeapRealtimeThread must be able to preempt the GC at
any time, the real-time task must not manipulate objects al-
located in the GCed heap. Any read of a reference will, if
the current thread is aNoHeapRealtimeThread, be checked
to ensure that the referenced object does not reside in the
heap. Errors can occur for two reasons: either (a) because
the program reads a field of an immortal object that hap-
pens to hold a heap reference or (b) because a memory area
is used by a mixture ofNoHeapRealtimeThreads andReal-
timeThreads and one of theRealtimeThreads stored heap
reference in one of the shared objects.

Synchronization.Another source of unbounded blocking
for hard real-time tasks comes from use of the Javasynchro-
nized statement. If aNoHeapRealtimeThread ever tries to
acquire a monitor held by a non-real-time Java thread, two
things can occur (a) theNoHeapRealtimeThread may expe-
rience unbounded locking because, the non-real-time Java
not being designed with real-time requirements in mind,
the Java code does not release the lock (there are docu-
mented cases of Java programs holding on locks forever).
(b) The non-real-time thread may trigger GC, thus causing
theNoHeapRealtimeThread to block for the entire duration
of the GC. This kind of situation may be due to an object al-
located in immortal memory and accessed from Java threads
andNoHeapRealtimeThreads. If a scoped area is used by a
mixture of threads, transitive locking can occur because of a
NoHeapRealtimeThread blocking on aRealtimeThread that
then blocks on a plain Java thread.

Finalization. Java supports automatic object cleanup
through the use offinalize() methods. In the case of scoped
memory, finalization occurs when the last thread ex-
its a scope. The danger with finalization is that it increases
the latency of scope exit. There is also a more sub-
tle problem with finalization. If a scope is used by a mix-
ture of NoHeapRealtimeThread andRealtimeThread, there
can be objects with heap references. The implementa-
tion faces a conundrum if the thread performing finaliza-
tion is a RealtimeThread, then scope exit may potentially
be blocked by GC. On the other hand if the finaliza-
tion thread is aNoHeapRealtimeThread, it can experience
a heap memory access exception. Neither is appeal-

3



ing, the solution selected by the RTSJ is to risk blocking
for GC.

Programming Guidelines. Some simple coding guide-
lines can prevent many of the above errors. Programmers
should avoid mixedNoHeapRealtimeThread and Real-
timeThread scopes.RealtimeThreads andfinalize() meth-
ods should be avoided altogether. Real-time code should
avoid, as much as possible, the use of static variables
that may contain, or be accessed by Java threads. Com-
ponents should document possible allocation patterns and
allocation should be hardened.

3.3. Memory Usage Estimates

Memory usage needs to be bounded to ensure that Java pro-
cesses do not run out of memory. While the constants are
highly implementation dependent, we can describe infor-
mally the methodology to be used to estimate space require-
ments. For scoped memory, we need to be able to compute
for each real-time thread and each scope,MaxAlloc(R in
S), the maximum allocation performed by the thread in that
scope. This is used to size scopes. For the overall VM mem-
ory requirements we need to knowMaxLive, the maximum
number of heap allocated objects. To this number we need
to add the overhead of the garbage collector. In the case of a
copying collector, for example, the GC overhead is roughly
equal toMaxLive. For a time-based real-time garbage col-
lector we need to compute the maximum instantaneous al-
location rate,MaxAllocRate. Together with the garbage col-
lection rate, the max allocation rate is used to compute
memory requirements of the RTGC as demonstrated in [2].
It is worth mentioning that computing the maximum num-
ber of allocated objects is easier than computing allocation
rates as these depend on the relative speed of threads. Also,
it is not clear what is the impact of bounding allocation rate
on programming style.

4. Implementation
This section describes the implementation of scoped mem-
ory and real-time garbage collection within the Ovm real-
time Java virtual machine.

For applications requiring high throughput, Ovm pro-
vides a mostly copying garbage collector that implements
Bartlett’s algorithm [5]. In this collector, stacks are scanned
conservatively (as in the Boehm collector [7]) but point-
ers in the heap are traced accurately. This is the most ef-
ficient choice for any system that, like Ovm, compiles to
C++ – as the C++ compiler does not support accurate stack
scanning. The GC emulates a two-space design that has the
added benefit of partially defragmenting memory. Conser-
vative scanning limits defragmentation as it may require the
pinning (i.e. prevent the copy) of objects referenced by am-
biguous pointers on the stack.

4.1. Ovm Scoped Memory

The Ovm scoped memory implementation provides strong
real-time guarantees for all scope operations. Scopes are im-
plemented as contiguous sequences of bytes. An auxiliary
data structurescopeOwner maps blocks to memory area ob-
jects. This allows for constant-time recovery of the memory
area in which an object was allocated in, anddoes notre-
quire additional overhead in the object header. In this we
differ from [11] and our previous work [21], which required
one additional word per object. We use the algorithm of [21]
to implement the constant-time write barriers needed to pre-
vent establishing illegal cross-scope references. Constant
time read-barriers are implemented by comparing the base
address of the object against the start of the heap. In Ovm
all barriers are implemented in Java. Code for these barri-
ers is given in Fig. 2. The worst case execution of scope en-
try is linear in the number of scopes in the program – the
first time a scope is entered data used for scope checks must
be computed as in [21]. Object allocation is linear in ob-

storeCheck(VM_Address src,VM_Address tgt) {
int sb = src.asInt() >>> blockShift;
int tb = tgt.asInt() >>> blockShift;
if (sb != tb) storeCheckSlow(sb, tb);

}

storeCheckSlow(int sb, int tb) {
tidx = VM_Word.fromInt(tb - scopeBaseIdx);
if (!tidx.uLessThan(scopeBlocks)) return ;
ta = scopeOwner[ tidx.asInt() ];
sidx = VM_Word.fromInt(sb - scopeBaseIdx);
if (!sidx.uLessThan(scopeBlocks)) fail ();
sa = scopeOwner[sidx.asInt()];
if (sa == ta) return ;
if ((ta.prange - sa.crange) & MASK)!=RES)

fail ();
}

readBarrier(VM_Address src) {
if (!doLoadCheck) return ;
if (src.diff(heapBase).uLessThan(heapSize))

fail ();
}

Figure 2. The store and read barriers in the Ovm im-
plementation of scoped memory. ThestoreCheck()

checks for objects allocated in the same block. If the
storeCheckSlow() has to be invoked, the memory area
of each object is retrieved and a range inclusion check is
evaluated. ThereadBarrier() will fail only if the cur-
rent thread is aNoHeapRealtimeThread and the target of
the reference is a heap location.
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ject size because our allocator zeros memory lazily, at allo-
cation time. Finally, scope exit is constant time (excluding
finalization and synchronization costs).

4.2. Ovm Real-time Garbage Collection

The Ovm real-time collector is a mark-sweep snapshot-at-
the-beginning non-copying incremental garbage collector.
The design is inspired by [2]. As the collector is written
in Java, we can utilize RTSJ features in the implementa-
tion. The collector thread is a real-time thread with a pri-
ority high enough that unless it yields, it will not be inter-
rupted by application threads. The timer that causes the con-
text switches between the collector and mutator is simply a
periodic task with higher priority than the collector. A sec-
ond timer tick causes the collector to pause and allow the
mutator to resume. When memory usage increases beyond
a user-specified threshold, the collector thread is scheduled.
Because of its priority, it immediately preempts any appli-
cation threads. The collector then proceeds as follows:

1. Accurately scan the stack.

2. Scan the virtual machine’s internal (immortal) data
structures.

3. Walk the heap starting with the roots found in (1 - 2).

4. Unmarked objects are reclaimed.

The only part of the RTGC that is not incremental is
stack scanning (we leave this to future work). In the re-
maining stages, the collector periodically polls to see if it
should yield to the mutator threads. The time between polls
is small. During the marking phase, we poll after touching
each pointer. Thus, the scanning of a large array can be in-
terrupted at any time. In the sweep phase we poll in between
pages. The amount of work to sweep a page is linear in the
page size (the default setting is 2048 byte pages).

Fig. 3 gives the Java code for the store barrier inserted
by the compiler every time the program writes a reference

storeBarrier(VM_Address tgt) {
VM_Address old = tgt.getAddress();
if (old!=null && old.getColor()==WHITE) {

old.setColor( allocationColor);
worklist.enqueue(old);

}
}

Figure 3. The store barrier of the Ovm RTGC is a shade-
old-referent-on-write barrier [22] that, so as to ensure pre-
dictability, runs even when not collecting. Every time a non-
null, unmarked target is encountered the object is colored
(by changing the lower order bits of the class pointer) and
added to a worklist.

to memory. While we could improve the average case by
adding a test to turn off the barrier when the RTGC isnot
running, we chose instead to have an unconditional barrier.
The motivation is that we want stores to be predictable. This
makes empiric evaluation of program execution times eas-
ier. The cost of any sequence of instructions will not be af-
fected by the state of the garbage collector.

As mentioned above, the C++ backend used by Ovm
does not support accurate stack scanning. To overcome
this problem the Ovm bytecode-to-C++ compiler generates
code to keep track of stack pointers explicitly, as in [24].

5. Experimental evaluation
In our experimental evaluation we have the following goals.
First, we compare the performance of running in our RTGC
to running in Java mode optimized strictly for through-
put. Second, we compare the performance of running in an
RTGC directly to using scopes.

5.1. Methodology

We have two full-fledged applications – one written by stu-
dents at Purdue, the collision detector, and the other, a real-
time CORBA server written independently by researchers
at UC Irvine [16]. All programs have been designed for and
written with the RTSJ APIs and scoped memory areas.

In order to obtain a comparison we have implemented
two compatibility layers that let us run the same program
either with a Real-time Garbage Collector, our copying
non-Real-time collector, or with ScopedMemory. The sim-
plest compatibility layer require nothing more than stub-
bing out the RTSJ API. All allocation is performed in the
heap. Furthermore,NoHeapRealtimeThreads can be pre-
empted by the garbage collector and scope checks are dis-
abled. We also support a slightly more complex compatibil-
ity layer for RTSJ programs that make use of thegetMem-
oryArea(Object) method. For these programs we do retain
scoped memory area objects, and extend each Java object
with an extra field that contains a reference to the scope in
which the object would have been allocated if the program
was running in scoped memory. This allows us to achieve
a complete semantic illusion of scoped memory support,
while submitting the application to the performance impact
of garbage collection.

Benchmarks were run on a Pentium IV 1600 MHz with
512 MB of RAM, running Linux 2.6.14. We compiled with
GCC 3.4.4.

5.2. Application Throughput

We use the industry standard SpecJVM98 benchmark suite
to estimate the impact of RTGC on throughput. Results are
reported for the second run with the-s100 option and a fixed
heap size of 256MB.
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Figure 4. Throughput overhead of RTGC for SpecJVM98.
We measure the throughput with three Ovm configura-
tions: Java-GC, RTGC with write barriers disabled (RTGC-
NoBar), and RTGC. Results presented are normalized to
Java-GC.

Fig. 4 is normalized to Ovm’s Java-GC algorithm. The
difference is the overhead of using a real-time collec-
tor. RTGC-NoBar indicates the cost of real-time collection
without write barriers and RTGC is the throughput over-
head of the real-time collector. The geometric mean for
RTGC gives a 7% slowdown with a worst case of 32% for
jess. This overhead comes from (a) write barriers, (b) al-
location, and (c) collection as each of these components
has been designed to tradeoff throughput for predictabil-
ity. The cost of write barriers is no more than 11% as
shown by RTGC-NoBar. Several benchmarks,compress,
db andmpegaudio, do not GC, and have little or no over-
head. Thus we conclude that allocation costs are a small
part of the overall costs. We used an allocation pro-
filer on jess to confirm that the 32% overhead is mostly due
to the time spent in the collector.

5.3. Comparing RTGC to Scopes

5.3.1. RTZen. We measure RTZen 1.1 running the
DOOM application with one client. The size of the sources
is 202KLoc. Client and server are on the same ma-
chine in single-user mode with almost all services dis-
abled. In all cases, the client VM is the Ovm with scoped
memory. We record the latency of processing a re-
quest in the server; barring VM jitter, this time is ex-
pected to be deterministic. Overall latencies include
three terms: client-side processing, local socket process-
ing in the OS, and server-side processing. Because the
client uses scopes, it exhibits no significant jitter. Fur-
thermore our measurements reveal no significant jitter in
the sockets layer. Hence, any jitter observed is due en-
tirely to the server.

Fig. 7(a) gives the latencies of 600 requests with a mostly

copying collector. As expected there are large outliers, up
to 58ms, due to GC pauses. Fig. 7(b) shows latencies of re-
quests running on a VM with RTGC. The collector is set to
run once every 4ms. Hence for every ms the collector ran,
the application got 3ms. Unfortunately, our implementation
does not always stop afterexactly1ms; thus the worst-case
pause time is 1.8ms (c.f. Fig. 7(e)). This said, the results are
good: the latencies range between 1.4 and 2.9ms and the
difference between the best- and the worst-case latency is
explained by the overhead of a single RTGC. Fig. 7(c) is
the same with scoped memory. The results are nicely pre-
dictable with latencies ranging from 1.7ms to 2.1ms. As the
2.1ms outlier occurs close to startup, we believe it is ei-
ther due to paging in the OS or else some lazy initializa-
tion in RTZen. Finally, Fig. 7(d) is a run without the scoped
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Figure 5. Mutator utilization trace for RTGC running the
RTZen benchmark measured over 10ms windows. (100%
indicates the mutator is in full control of the CPU and 0%
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(a) Java-GC:Latency. (b) RTGC: Latency.
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(c) ScopedMemory:Latency. (d) ScopedMemory-NoChecks:Latency.
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Figure 7. Evaluating the UCI RTZen real-time CORBA ORB.

memory dynamic checks (read/write barriers) as one could
obtain with static analysis or with the scoped type systems
of [1]. The latencies are lower than before, around 1.6ms.

As mentioned, the RTGC is configured for 75% utiliza-
tion; i.e. the worst-case drop in throughput should be 25%.
Fig. 5 shows a trace of the mutator utilization measured over
10ms intervals. At the beginning of the trace it drops to zero;
this is an artifact of the profiler used to record the utiliza-
tion and is unrelated to RTGC. Subsequently the utilization
holds between 65% to 70%. It is instructive to relate utiliza-
tion and latency simultaneously as shown in Fig. 7(f). The
graphs zooms in on one RTGC cycle. Every request clearly

takes a hit when the collector is running. The increase in la-
tency corresponds to the typical GC pause time. Because the
mutator gets 3ms windows, one would expect to see some
requests get processed in the best-case time of 1.5ms; how-
ever, because the client itself is periodic, the requests typi-
cally end up coming at around the time of GC activity.

Finally, Fig. 6 examines memory usage in the RTGC.
The lower line indicates the sum of the sizes of all objects
in the heap that have been allocated and not yet collected
(live data). The top line indicates the sum of the sizes of the
pages used. The difference between them is a worst-case in-
dicator of fragmentation. In this application fragmentation
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(a) Java-GC:Latency. (b) RTGC: Latency.
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(c) ScopedMemory:Latency. (d) ScopedMemory-NoChecks:Latency.
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(e) RTGC: Pause times. (f) RTGC: Utilization trace.

Figure 8. Evaluating the Collision Detector.

is small, no more than 10%. Moreover we can observe how
GC gradually free dead objects.

This benchmark is interesting as it has shown that RTGC
meets the application’s predictability requirements. In term
of median latencies, Java-GC and RTGC are the fastest with
a median latency of 1.5ms. Scopes are a bit slower with me-
dian latencies of 1.7ms (1.6ms without scope checks).

5.3.2. Collision DetectorThe collision detector is a
41KLoc RTSJ program with two real-time threads. One
thread is a periodicNoHeapRealtimeThread that de-
tects collisions in data generated by a simulator. The other
thread is a Java thread that interacts with the environ-

ment. The input is a complex simulation involving over
200 aircrafts. We record the latency of processing one in-
put frame.

As before, we begin with the mostly copying collec-
tor. Fig. 8(a) shows that the maximum latency for one in-
put frame is 114ms. Switching to RTGC dramatically de-
creases the worst-case latency, it drops to 18ms, shown in
Fig. 8(b). The RTGC is configured for 2ms of mutator activ-
ity for every 1ms of collector activity. The utilization trace
of Fig. 8(f) shows 60% utilization most of the the time.
The long period of collector activity at the beginning of
the utilization trace is due to the simulation initializing it-
self; this is not part of the mission phase and has no corre-
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sponding latency measurements. The RTGC pause times of
Fig. 8(e) exhibit a worst case of 1.4ms (during the initial-
ization phase) and 1.1ms during the mission phase. Scoped
memory, as shown in Fig. 8(c), is more regular behavior
with latencies ranging between 5ms and 10ms. The jitter
appears to entirely due to algorithmic reasons (input frames
that have more collisions are more complex). Disabling dy-
namic checks improves the performance by about 1ms as
shown in Fig. 8(d).

In summary, the collision detector behaves as expected
with Java-GC running at median 9ms, RTGC at 11ms and
scoped memory 8ms, and without checks at 7ms. Here us-
ing scoped memory is a performance win over garbage col-
lection.

6. Related Work
BeeBee and Rinard reported [6] that they found it “close to
impossible” to develop error-free RTSJ programs. This dif-
ficulty of has motivated Kwon, Wellings and King to pro-
pose Ravenscar-Java [18]. The authors point out that while
Java is a better programming language for high-integrity
system than C, there are some features that are error prone.
The profile defines a subset of the RTSJ that can decrease
the likelihood of errors. Ravenscar mandates that applica-
tions be split in two phases: an initialization phase in which
data structures, scopes, and threads are created and have ini-
tial values assigned to them, and a mission phase in which
the real-time logic is invoked. All memory areas are created
in the initialization phase and reside in immortal memory,
in other words, the scope hierarchy is flat. While Ravenscar
simplifies the scope structure, it does not prevent memory
access violation. In [17], Kwon and Wellings propose an-
other approach simplification to the RTSJ. They associate
scoped memory areas with methods transparently avoiding
the need for explicit manipulation of memory areas. Their
approach is elegant and has the potential for catching many
common errors, but it cannot guarantee the absence of mem-
ory violation (in general the problem is undecidable). Fur-
thermore, their scopes cannot be multi-threaded and we see
no obvious way to handle the RTSJ idioms of [23].

Recent development in the general area of type systems
for controlled sharing of references are promising. The goal
of previous works such as flexible alias protection [20] and
Islands [14] was to restrict the scope of references in object-
oriented programs. The idea of using these techniques for
safety of region-based memory management was is due
to Boyapati et al. [10]. But, they required changes to the
Java syntax and has not yet been evaluated on realistic ap-
plications. One of the authors has worked onSTARS(the
acronym expends to “scoped types and aspects for real-
time systems”), a proposal that uses a pluggable owner-
ship type system to give a strong guarantee of correctness.
RTSJ programs developed with the STARS methodology

will never experience memory access exceptions. This is
achieved without changes to the Java programming lan-
guage and small changes to the programming style [1]. An
added benefit of STARS is that dynamic access checks are
not required.

Borg et al. [9] have made an intriguing case for anEn-
tropy Hypothesiswhich connects memory management to
information theory. The performance of a memory manage-
ment system is then related to the amount of information the
programmer provides about the lifetimes of objects.

Nilsson et al. [19] present an ahead-of-time compiler for
Java and a suite of real-time garbage collectors. However,
our experimental evaluation is larger in scope, as it includes
more benchmarks as well as a comparison against scoped
memory and uses a high-performance real-time Java virtual
machine.

7. Conclusions
This paper is the first side-by-side empirical evaluation of
the impact of memory management regimes on realistic
real-time Java programs. Ovm is the only open source, high-
performance, real-time Java virtual machine that supports
both scoped memory and real-time garbage collection. Our
benchmarks include the throughput-oriented industry stan-
dard SpecJVM98, as well as two medium sized real-time
applications, RTZen (202KLoc) and CD (41KLoc). The re-
sults reported in this paper, were obtained by implementing
a compatibility layer that lets users run the exact same code,
with the same semantics, either with a real-time garbage
collector or with scoped memory. In terms of applicabil-
ity, our real-time garbage collector is most closely related
to the work of Bacon et al. [2], but we believe that our re-
sults also apply to Henriksson [13] algorithm. Siebert uses
a very different approach in [25], his algorithm avoid copy-
ing of objects but access to their fields is not guaranteed to
be constant-time.

There is a clear software engineering advantage to the
use of real-time garbage collection as it obviates the need
to develop special versions of classes as is the case with
scoped memory and reduces the opportunities for run-time
errors. Thus the development times of applications using
RTGC are likely to be substantially smaller. But this comes
at a price. The median overhead of using RTGC is 37% as
compared to scoped memory, and 80% in the worst case.
This means that when the RTGC is running only 20% of
the CPU may be available to an application. Another differ-
ence between RTGC and scopes is in the ease of analysis:
scoped memory only requires knowing the maximum num-
ber of allocated bytes per scope, while for RTGC it is nec-
essary to also predict the maximum allocation rate. Analyz-
ing the maximum allocation rate is much harder, especially
in a highly concurrent system. Overall, we recommend the
use of real-time garbage collection when the overheads are
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acceptable but we expect that there will be a number of ap-
plications where scoped memory areas will remain the only
viable alternative.

We are currently working on improving the Ovm real-
time collector to support defragmentation and to improve
worst-case times for allocation of large objects. More ag-
gressive compiler optimizations are envisioned to reduce
costs of barriers in real-time garbage collection as well as
for scoped memory.
Ovm is freely available fromhttp://ovmj.org. The collision de-
tector is available from the authors. RTZen can be obtained from
http://doc.ece.uci.edu/rtzen.
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