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ABSTRACT

Pizlo, Filip Ph.D., Purdue University, June 2011. Fragmentation Tolerant Real
Time Garbage Collection . Major Professors: Jan Vitek and Antony Hosking.

Programming is the art of instructing a computer how to perform a given computa-

tion over some input. At its core, programming is about manipulating data, creating

it, transforming it, and finally, deleting it. Programming languages specify how that

data is represented in a computer’s memory and provide the means to manage it.

Garbage collection is a technique for simplifying the management of memory, by au-

tomatically deleting data when it is safe to do so. But this benefit comes at a cost:

garbage collection may cause pauses or slow-downs, which reduce the application’s

responsiveness. In his April 1977 report, Baker proclaimed that his real-time garbage

collector had solved the problem: from that point forth, operating systems, databases,

and even low-level interrupt handlers could freely use garbage collected primitives to

manage their state. In the years since Baker’s result, the garbage collection field has

seen numerous extensions and innovations. A number of competing algorithms have

been proposed, in addition to optimizations for Baker’s original result. But despite a

large body of research, the promise of ubiquitous garbage collection has not come to

fruition: most real-time systems continue to use unsafe, complex, and painstakingly

low-level techniques for managing memory.

Real-time systems require timely and predictable execution. Operations that mod-

ify memory should complete in a short and predictable unit of time. The amount of

memory that the program is using – and hence the success or failure of memory

allocation requests – should be straight-forward to predict. Any asynchronous activ-

ity, such as collecting garbage memory, should not interfere with program execution.

All previous garbage collection algorithms make trade-offs that inhibit some or all of
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these requirements. Many results in the literature guarantee timeliness of memory

operations at the cost of fragmentation. Memory fragmentation leads to allocation

requests sometimes failing not because of inadequate total free memory, but because

the free memory takes on a shape that is not conducive to allocating objects of certain

size. Other algorithms address fragmentation, but do so by making memory accesses

take asymptotically longer in some cases. No facilities are provided for predicting

when fragmentation may occur, or when a memory access may take longer due to

the mechanisms for fighting fragmentation. This dissertation addresses these prob-

lems, by showing that real-time garbage collection can be made to provide wait-free

heap access and fragmentation tolerance while eliminating the need to stop program

execution. Algorithms presented herein are O(1) and wait-free in the sense that the

duration of a memory access operation depends on neither past program behavior

nor concurrent memory operations by other tasks in the system. These algorithms

allow for fragmentation tolerance; the success or failure of memory allocation requests

depends only on the total amount of free memory and not on any other properties.

Finally, this dissertation shows how to provide these guarantees while ensuring that

asynchronous activities associated with memory management never require pausing

the application; instead, the application is free to preempt the garbage collector

whenever necessary.

The goal of this dissertation is to identify what properties a garbage collection

algorithm should have in order to satisfy the needs of real-time systems, and which

techniques can be brought to bear in addressing this problem. These questions are

answered with both an analytical study of the behavior of the algorithms, as well as

in-depth experiments that demonstrate the suitability of the presented techniques for

real-time systems.
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1 INTRODUCTION

Programming is the art of instructing a computer how to perform a given computation

over some input. At its core, programming is about manipulating data, creating it,

transforming it, and finally, deleting it. Programming languages specify how that

data is represented in a computer’s memory and provide the means to manage it.

Garbage collection is a technique for simplifying the management of memory, by

automatically deleting data when it is safe to do so. But this benefit comes at a cost:

garbage collection may cause pauses or slow-downs, which reduce the application’s

responsiveness. In his April 1977 report, Baker proclaimed that his real-time garbage

collector had solved the problem: from that point forth, operating systems, databases,

and even low-level interrupt handlers could freely use garbage collected primitives to

manage their state. In the years since Baker’s result, the garbage collection field has

seen numerous extensions and innovations. A number of competing algorithms have

been proposed, in addition to optimizations for Baker’s original result. But despite a

large body of research, the promise of ubiquitous garbage collection has not come to

fruition: most real-time systems continue to use unsafe, complex, and painstakingly

low-level techniques for managing memory.

The goal of this dissertation is to identify what properties a garbage collection

algorithm should have in order to satisfy the needs of real-time systems, and which

techniques can be brought to bear in addressing this problem.

1.1 Real-time Systems

A computer system is said to be real-time if upper bounds on time are required.

For example, a video player application may have a 1/60 second bound on the logic

responsible for decoding and displaying each frame. An artificial pacemaker must
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detect, and respond to, irregular heart rhythms within 120 milliseconds. A late re-

sponse is a wrong response: there is little value in a pacemaker that stimulates the

heart after the patient has already died. Real-time systems span all industrial do-

mains, ranging from consumer electronics to assembly line automation, automobiles,

rail, aircraft, and medical devices. This wide range of applications leads to a wide

range of interpretations of what it means to be “real-time”. Some systems are said to

be soft real-time, in the sense that a late response might be occasionally acceptable

so long as it does not occur too often. The video player fits this category – skipped

frames are annoying and affect the perceived quality of the application, but loss of

life is unlikely. On the other hand, a system is said to be hard real-time if a late

response is a strong failure. Hard real-time systems have hard requirements on both

timing and logic; for example the pacemaker is required to always respond within 120

milliseconds and this response must be correct.

While hard real-time systems are important in their own right, it is also the

case that new techniques for making systems more responsive typically originate

in the hard real-time field and eventually find their way into soft real-time, and

ultimately conventional software systems as well. For example, task scheduling and

synchronization techniques originally conceived for hard real-time systems have now

been transitioned into many desktop operating systems in recognition of the fact that

games and multi-media applications could benefit from them. An algorithm designed

for hard real-time is almost always applicable to soft real-time; as such the remainder

of this dissertation focuses on hard real-time and the term “real-time” will be used

to mean “hard real-time” for brevity.

Real-time software engineering requires understanding not only the correctness

properties of programs, but their worst-case performance as well. The specification

of a real-time system will require exact bounds on execution times of the procedures

used to respond to external events. Proving these bounds in a convincing manner –

and thus establishing confidence that the software will not be tardy in its response

to an important event – becomes one of the focal points of the real-time software
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engineering effort. Practitioners approach this problem by running experiments, and

demonstrating that the worst-case observed running times are within the required

bounds. But measuring the exact worst-case using experiments is risky: incomplete

coverage can lead to an underestimation. Different inputs may cause the program

to take different paths – and some paths may be more expensive than others. Real-

time developers program around this by using algorithms and techniques that have

provably predictable performance. If it can be proved that the total response time of

an application is a function of the input and nothing else, then for a given input, the

best-case and worst-case will be equivalent, allowing for the worst-case to be observed

experimentally. This motivates a two-pronged strategy for establishing worst-case

bounds: first the system is designed to be predictable enough that the worst-case can

be observed with a finite set of experiments, and then an experimental campaign is

carried out to find out exactly what the worst-case is.

Designing for predictability motivates choosing the simplest possible algorithms,

the simplest possible software architecture, programming languages and compilers

that do not themselves introduce unpredictability, and hardware and operating sys-

tems that are also known to be predictable. Algorithms with exactly constant (as

opposed to asymptotically constant) performance are favorable as their worst-case

can be observed in a single run. If constant performance is not possible, then the

software is designed to have end-to-end performance that can be precisely expressed

as a function of some simple property of the input – for example, the input size. This

emphasis on predictable performance places some noteworthy constraints on algo-

rithm design. Algorithms that sometimes run faster, for example by identifying “fast

paths” for common cases, are harmful as they can make experiments misleading –

unless an input can be generated that provably exercises the worst possible slow path

execution, any given experiment may accidentally report a better running time than

what the program may experience in practice. In general, variability of algorithm ex-

ecution time is undesirable in real-time systems unless the maximum can be observed

in a single experiment.
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While provably predictable systems are easy to analyze, they come at a cost.

Modern hardware architectures gain much of their performance from using inherently

unpredictable optimizations such as memory caches and branch prediction. These

optimizations rely on the hardware making opportunistic assumptions about the be-

havior of programs. In the case of caches, the hardware assumes that the program

will tend to reuse the same memory locations. In the case of branch prediction, the

hardware attempts to predict which paths of execution the program will take. If the

assumptions turn out to be true, the program runs faster – but if they are wrong,

then the program can run much slower. A memory access that results in a “cache

miss” may cost 100× more than other memory accesses. Many real-time systems

side-step these issues by turning off caches and avoiding any hardware architectures

that rely on branch prediction. But the performance advantages of modern hardware

are becoming increasingly difficult to ignore. Recently, pipelined architectures with

memory caches such as RAD750 and LEON found their way into real-time systems;

both are now used extensively for flight control software. These architectures have

gained acceptance because of advancements in probabilistic reasoning about unpre-

dictable algorithms. If the random variables that govern unpredictable events are

independent and identically distributed, then the probability of pathological behavior

can be proved to be infinitesimal – results with probabilities much less than 2−128

are common. The probability of such a 2−128 event occurring is equal to tossing a

balanced coin 128 times and seeing it land on its face each and every time. Just to

appreciate the scarcity of such an event, consider running this experiment again and

again every nanosecond since the beginning of the universe (the Big Bang). We would

still have a tiny probability of about 2−40 of ever observing a coin land on its face 128

times in a row. This new approach to real-time systems is promising, but the extent

to which it simplifies validation should not be overestimated. For an unpredictable

algorithm to be used, an analysis of probability distributions of all random variables

that govern its unpredictability must be undertaken. Unless the probability of patho-

logical behavior can be proved to be infinitesimal, the algorithm will be rejected.
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Thus even though modern real-time systems are often run on cache-optimized and

branch-predicted hardware architectures, the software algorithms themselves tend to

still be designed for deterministically, rather than probabilistically, predictable per-

formance. It all comes down to simplicity: analyzing a deterministic algorithm is

easier than analyzing a probabilistic one.

Real-time systems are distinguished by their unique requirements. Worst-case

performance is given the same importance as logical correctness, and to that end,

predictability of software becomes a central goal. This places significant constraints

on the kinds of software engineering techniques that can be used in real-time systems.

In particular, many of the high-level programming techniques that have been the

cornerstone of modern software engineering have yet to be adopted for real-time.

1.2 Garbage Collection

At its core, programming is about creating, transforming, and deleting data.

Garbage collection simplifies programming by deleting data automatically once it is

safe to do so. This section motivates the need for garbage collection, provides a high-

level model of how a garbage collector interacts with computer programs, and shows

how some well-known garbage collectors affect the performance and predictability of

computer programs.

1.2.1 Mapping Data to Computer Memory

Computers use random-access memory (RAM) to store data. Memory is a finite

sequence of finite-precision integers. Programming languages must provide a map-

ping from high-level data types that the programmer uses (such as numbers, text,

vectors, or collectively objects) to the integer sequences that can be stored in memory.

These sequences – known as blocks – must then be arranged in memory somehow.

The techniques used for arranging those blocks are collectively known as memory

management.
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The simplest approach to memory management is to require the programmer

to specify exactly how many objects will be needed, along with each object’s size

and type. The programming language then statically translates each object into a

fixed memory location; as a result, no memory management is performed at run-

time. Global variables in the C programming language are an example of this static

memory management technique. But high-level languages have strayed away from

static memory management, and have increasingly provided facilities to allocate new

objects at run-time.

Low-level languages like C provide a dynamic memory management technique

that relies on the programmer manually requesting blocks of memory, and manually

deleting those blocks once they are no longer used. The mapping between blocks and

objects is entirely up to the programmer. The memory management library handles

the arrangement of blocks, and maintains a pool of deleted blocks that can be used for

servicing new allocation requests. But this manual approach has its pitfalls: deleting

a block too soon may lead to memory corruption, while deleted it too late may

lead to premature memory exhaustion. Correctly keeping track of which blocks may

be safely deleted is entirely up to the programmer. The level of difficulty involved

in programming with manual memory management is debatable – but out of fear

that manual memory management is unsafe and error-prone, most modern high-level

programming languages instead provide a garbage collector that deletes unused blocks

of memory automatically. [1]

1.2.2 Low-level Memory Access Model

At the lowest level of abstraction, memory is a sequence of storage cells. Each cell

has two finite-precision natural numbers associated with it: an immutable location

that is used to identify the cell, and a mutable value. The variables l, v range over

natural numbers. wr(l,v) stores the value v into a memory cell whose location is l,

while rd(l) returns the value stored in memory cell at location l.
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1.2.3 High-level Memory Access Model

Garbage collection is used in conjunction with languages that provide a high-level,

abstract view of memory. Instead of operating over memory cells, the programmer

works with objects. Each object contains a length followed by a payload of references

to other objects. Objects are never stored in-place by program variables; instead,

program variables just store references to objects. The variables o, v range over object

references, and the variable n, i ranges over natural numbers. Alloc(n,v) allocates a

new object of length n, with the n-sized payload containing references to the object

referenced by v. Alloc(n,v) returns an object reference to the object that it allocated.

Store(o,i,v) stores v into slot i in the object referenced by o. Load(o,i) loads slot i from

o.

Beyond the Alloc, Store, and Load operations, object references are opaque to the

programmer – that is, the program may pass them around using variable assignments

but cannot manipulate them directly. This allows the language and garbage collector

to choose how they are represented. Typically, an object reference is implemented as

a natural number corresponding to the location of the block of memory containing

the object’s data. All of the garbage collectors in this chapter use this approach.

1.2.4 Program Execution Model

The program consists of one or more threads. Each thread executes its own

stream of program statements. Threads may be executed concurrently to each other,

for example on separate processor cores, or by way of a time-sharing scheduler on a

single core. The variable t ranges over threads. T is the set of all threads in a given

program.

Atomicity is ensured using the atomic statement, which blocks until no other

threads are executing atomic and then executes the given sequence of code. A stronger

form of atomicity is implemented using safepoint, which blocks all threads at a high-

level statement boundary (i.e. in between executions of Alloc, Load, or Store) and
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then executes the given sequence of code. A weaker form is ragged safepoint, which

requests that all threads t in T execute the given sequence of code at their next

high-level statement boundary, and returns only after all threads have done so.

The low-level operations for accessing memory (wr and rd) are guaranteed to be

atomic with respect to themselves and each other, though they do not block to wait

for other atomic operations to complete. In this sense, wr and rd are said to be

wait-free. A wait-free algorithm is one that completes in bounded time regardless

of concurrent activity. The high-level mechanisms for achieving atomicity (such as

atomic or safepoint) are not wait-free.

1.2.5 Definitions common to all garbage collectors

The mapping of objects and their contents to the low-level memory access model

is up to the garbage collector. The garbage collector is given a heap H, which is

a set of contiguous memory locations, and manages a set O, which contains the set

of memory locations that correspond to valid object references such that O ⊆ H.

Variables o, l, r, d, s, v, w range over memory locations in H, i, n are natural numbers,

and t ranges over threads. roots(t) returns the set of locations used to store the

program variables used by thread t, such that roots(t)∩H = Ø. That is, the memory

used to store program variables is outside the scope of the garbage collected heap, and

is managed using other means (usually directly by the underlying operating system).

The remainder of this section is devoted to reviewing previously known garbage

collection algorithms, with a focus on those algorithms that have been designed for

real-time systems. The goal of this review is to show precisely which properties desired

in real-time systems are missing from existing garbage collection algorithms.
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Store(o,i,v) →

wr(o+1+i,v)

v ← Load(o,i) →

v ← rd(o+1+i)

o ← Alloc(n,v) →

atomic

if not l . [l,l+n] in F

safepoint

L ← Ø

foreach t in T

foreach r in roots(t)

L ← L + rd(r)

while d in refs(s) . d not in L and s in L

L ← L + d

while o in O . o not in L

O ← O − o

F ← F + M(o)

if l . [l,l+n] in F

wr(l,n)

foreach w in [l+1,l+n]

wr(w,v)

O ← O + k

F ← F − [l,l+n]

return l

else

abort

Figure 1.1: The MarkSweep garbage collector.
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1.2.6 Mark Sweep

The MarkSweep garbage collector maintains a set F of locations in H that are

not used by any objects, such that O∩F = Ø. Object allocation requests (Alloc(n,v))

are satisfied by finding the appropriate block of free memory in F . When an allocation

request cannot be satisfied, MarkSweep stops all executing threads and identifies

which objects in O are no longer reachable. The set L stores references to reachable

objects; this set is constructed by the collector during the course of its execution. An

object is reachable if it can be accessed by zero or more Load(o,i) statements starting

with a program variable in some thread. MarkSweep then places the memory used

by unreachable objects (those objects in O but not in L) in F , and resumes program

execution.

For the purposes of implementation, the sets maintained by the garbage collector

(O, F , and L) can be maintained as bit-vectors placed in memory locations outside

of H; this allows for both compactness and speed of execution. MarkSweep uses

a simple object structure. An object of length len(o) consists of len(o)+1 memory

locations. The first location stores the object’s length and the remaining locations

store the payload. M(o) denotes the set of locations used by o and refs(o) returns the

set of references to other objects in o.

len(o) = rd(o) M(o) = [o, o+len(o)]

refs(o) = {rd(l) . l in [o+1, o+len(o)] }

Figure 1.1 shows the MarkSweep garbage collector as a set of transformations

from high-level program operations (Alloc, Store, Load) to low-level operations over

memory. The Store and Load operations are trivially translated into wr and rd. Alloc

becomes a more complex function, which first checks if the allocation will fail, and

if so, it performs a collection cycle to free up memory. An allocation fails if there

does not exist a contiguous block of locations [l,l+n] in F . The collection cycle begins

by bringing the program to a safepoint so that the only thread executing is the

current one, and all threads are stopped at boundaries in between stores, loads, and
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allocations. This enables the collector to accurately read the roots(t) for each thread.

The roots are used to construct an initial approximation of the set L. At the end

of collection, L will contain precisely those objects that are reachable from roots via

zero or more Load operations. After reading each thread’s roots and placing those

object references into L, the collector performs two additional loops: a marking loop

and a sweeping loop (hence the collector’s name). At a high level, the marking loop is

a fixpoint over the heap that proceeds until there no longer exists an object in L that

contains references to objects not in L:

while d in refs(s) . d not in L and s in L

L ← L + d

This loop is typically implemented as a graph search (either depth-first or breadth-

first; the choice of order is typically made based on which is easier to implement).

The graph search completes in Θ
(∑

o in L |refs(o)|
)

time, given the set L after the

search completes. The sweeping loop reclaims the memory for objects o in O that are

not in L, by placing their memory M(o) into F :

while o in O . o not in L

O ← O − o

F ← F + M(o)

This completes in, roughly, O
(∑

o in O |M(o)|
)

time. For simplicity, MarkSweep col-

lectors can be said to complete in O(|H|) time though optimizations exist that either

reduce or amortize this worst-case [2]. After the collector completes, MarkSweep

finishes the allocation request by again checking if the allocation is possible (i.e. if

there is a block of contiguous locations [l,l+n] in F ), and if so, creating the object

and returning it. If no sufficiently large contiguous set of locations exists in F , the

allocation fails.

Discussion. This collector has a major short-coming. Allocating an object of length

n requires finding a contiguous set of memory locations [l,l+n] in F . While this

search can be made efficient (constant-time algorithms are known to exist [3]), it
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bump(n) =

r ← bT

bT ← bT +n+2

wr(r, r)

wr(r+1, n)

OT ← OT + r

return r

copy(o) =

if fwd(o) in OT

return fwd(o)

else

r ← bump(len(o))

wr(o, r)

foreach i in [0,len(o)−1]

wr(r+2+i, rd(o+2+i))

return r

Figure 1.2: The SemiSpace garbage collector helper functions.

is not guaranteed to succeed even if F contains the required amount of free space

due to fragmentation. Consider a program that invokes Alloc(1,v) repeatedly until

it fills up the heap, and links the objects together so that every other allocated

object is unreachable. It is possible that the heap will be half-empty but any call to

Alloc(2,v) will fail, because no large enough contiguous free region exists in F . This

makes MarkSweep particularly undesirable for real-time systems. The practitioner

will already be burdened with the need to prove that his program does not use

more memory than is available. This proof burden becomes more cumbersome if the

garbage collector can cause memory to be wasted as an outcome of its strategy for

organizing the heap.

1.2.7 Semi-Space

The SemiSpace collector addresses this problem by moving objects around to

eliminate fragmentation. [4] SemiSpace splits the heap into two semi-spaces HT (to-
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Store(o,i,v) →

wr(o+2+i,v)

v ← Load(o,i) →

v ← rd(o+2+i)

o ← Alloc(n,v) →

atomic

if bT +n+1 > max(HT )

safepoint

OT ,OF ← OF ,OT

HT ,HF ← HF ,HT

bT ,bF ← bF ,bT

foreach t in T

foreach r in roots(t)

wr(r,copy(rd(r)))

while o in OT . refs(o) ∩ OF 6= Ø

foreach l in [o+2,o+len(o)+1]

wr(l,copy(rd(l)))

OF ← Ø

bF ← 0

if bT +n+1 ≤ max(HT )

l ← bump(n)

foreach w in [l+2,l+n+1]

wr(w,v)

o ← l

else

abort

Figure 1.3: The SemiSpace garbage collector.
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space) and HF (from-space) so that |HF | = |HT |, HF ∪HT = H, and HF ∩HT = Ø.

min(HT ) is the first address in to-space and max(HT ) is the last address. OT , OF are

sets of valid object references; bT , bF are allocation pointers in HT and HF respec-

tively. While the collector is freeing memory, objects in SemiSpace may simultane-

ously exist in both form-space and to-space. Thus objects have one additional field

fwd(o), which is used to link the from-space copy to the to-space.

fwd(o) = rd(o) len(o) = rd(o+1)

M(o) = [o, o+len(o)+1] refs(o) = {rd(l) . l in [o+2, o+len(o)+1] }

The set of addresses [min(HT ), bT ) corresponds to the set of memory locations

used by allocated objects
⋃

o in OT
M(o). Free space is the set of addresses [bT ,

max(HT )]. When refs(o) ∩ OF 6= Ø the object o still has references to from-space,

which should be updated. The SemiSpace collector is shown in Figure 1.3, with the

bump() and copy() helper functions shown in Figure 1.2. SemiSpace has fast allo-

cation in the common case: the next object is always allocated at bT . When space

runs out (bT reaches max(HT )), the collector “flips” the two spaces and evacuates

all reachable objects from the from-space to the to-space. This involves copying the

objects’ contents, and fixing references in objects’ payloads to refer to to-space in-

stead of from-space. After collection, the to-space will have only reachable objects

at addresses less than bT , and only free space at addresses greater than bT . SemiS-

pace uses two helper functions: bump and copy. The bump function allocates – but

does not initialize – a new object in to-space. The copy function checks if a to-space

copy of the given object exists. If it does, then a reference to the to-space copy is

returned. If it does not exist, it is created by first allocating it by a call to bump and

then copying the contents of the from-space original into the newly allocated to-space

copy. A reference to the to-space copy is also stored into the from-space copy’s fwd

field so that future calls to copy on this same object will return the same to-space

copy instead of creating a new one.
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Discussion. The MarkSweep and SemiSpace algorithms both ensure O(1) and

wait-free heap accesses. A wait-free algorithm is one that completes in bounded time

regardless of concurrent activity. Both Load and Store are guaranteed wait-free be-

cause they are transformed into wait-free rd and wr statements and a small amount of

arithmetic. The biggest shortcoming of these two algorithms is the worst-case perfor-

mance of Alloc. Both MarkSweep and SemiSpace must perform roughly O(|H|)

work on those calls to Alloc that exhaust memory. This makes Alloc unpredictable:

most allocations will take O(n) time where n is the requested object size, while oc-

casionally they will take O(|H|) time because of the need to collect garbage. This

precludes Alloc from being used inside of low-latency real-time tasks unless |H| is

small. The desire to reduce the worst-case cost of Alloc is the main motivation for

the real-time garbage collection algorithms discussed later in this section.

SemiSpace has a major advantage over MarkSweep in that it is not susceptible

to fragmentation. No matter what sequence of object allocations is invoked by the

program, the success or failure of the next allocation is determined entirely by the

requested length, the sum of the sizes of previously allocated objects, and the heap

size. This property is called fragmentation tolerance [5].

1.2.8 Definition of Fragmentation Tolerance

Fragmentation is typically understood in terms of the shape of free memory. Two

categories of fragmentation exist: external and internal. External fragmentation

refers to the case where free memory consists of discontiguous regions. This can

potentially lead to some memory being wasted, since it is not possible to allocate

a contigous large object whose size is the sum of the sizes of the discontiguous free

regions. For example if a MarkSweep collector is used to allocate five objects in

a row and the second and fourth are freed, then the space between the first and

third, and between the third and fifth, is inaccessible to larger allocations. Internal
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fragmentation refers to memory being wasted internally to objects, for example due

to object headers or because object sizes have been rounded up. [6]

Internal fragmentation occurs in all garbage collectors due to the need to account

for object alignment and to maintain headers for collector meta-data. Internal frag-

mentation is relatively harmless because it can be accounted as a bounded per-object

overhead, and it does not vary between invocations of the same allocation. Exter-

nal fragmentation, on the other hand, leads to varying amounts of wasted space. In

MarkSweep, the amount of wasted space depends on the algorithm for searching

the set of free memory locations F , the sequence of previous allocations, and the

strategy used in the collector’s sweep. In some cases, external fragmentation does

not lead to any wasted space. If MarkSweep is used to allocate objects of only

one size, then external fragmentation will never lead to allocation requests failing.

Robson found that if variable object sizes are allowed, MarkSweep will in the worst

case waste space proportionally to the logarithm of the ratio of the maximum object

size to the minimum object size [7, 8]:

O

(
log

maxo∈O |M(o)|
mino∈O |M(o)|

)
(1.1)

In other cases, external fragmentation only leads to a constant and predictable

amount of wasted space. In SemiSpace, the heap is split into two equal-size regions.

One of these regions is unused and hence free, but cannot be used for any alloca-

tions. The other region may also contain free space. Thus a heap in SemiSpace is

externally fragmented in the sense that free memory may be discontiguous. But this

fragmentation only leads to a predictable 2× wastage, since exactly half the heap is

made unavailable for allocation at any time.

The notion of external fragmentation is too imprecise to answer whether or not a

collector will waste space, and if so, how much space will be wasted. In particular,

both SemiSpace and MarkSweep have some kind of external fragmentation and

yet SemiSpace is completely predictable and wastes exactly half of the heap, while

in MarkSweep the degree of external fragmentation (and hence the amount of
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wasted space) at the time of any allocation depends on what kinds of allocations

were performed previously, and in what order.

This section introduces a new way of thinking about fragmentation. Instead of

treating fragmentation as a function of heap shape, this section just considers what

the user of a particular collector would have to do to predict when an allocation

succeeds. Consider as an example a collector that has no external fragmentation.

This is possible with a mark-compact strategy [9], in which the sweep in MarkSweep

is replaced with a phase that moves all surviving objects to one side of the heap. In

such a collector, if the size m(n) of an allocation Alloc(n,v) is less than or equal to

the amount of free space |F |, then the allocation will always succeed. Conversely,

if m(n) is greater than |F | then the allocation will always fail. The size m(n) can

account for internal fragmentation; i.e. whatever the collector needs to do to either

align object sizes or prepend headers for meta-data. A collector is thus said to be

fragmentation tolerant if it provides the user with the ability to predict whether an

allocation will succeed by just looking at the object size and amount of free memory.

Different fragmentation tolerant collectors may have different definitions of m(n), and

the difference between m(n) (the number of locations the object will deplete in the

heap) and n (the number of locations used just for the payload) is a measure the

collector’s fragmentation, or amount of space that is wasted due to each allocation.

Formal Definition

Predicting the success or failure of allocations requires that the user knows the

objects allocated but not yet freed (the set O) as well as their lengths n, and the size

of the heap (|H|). To be fragmentation tolerant, a collector must provide an object

size function m(n) so that:

F1. Given an object length n, every object allocated using Alloc(n,v) will deplete

exactly m(n) free memory locations.
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F2. If the number of free locations in memory is greater than or equal to m(n) then

an allocation Alloc(n,v) must succeed.

F3. The function m(n) must be lower- and upper-bounded by affine functions; that

is m(n) = Θ(n) must hold. How quickly m(n) grows with respect to n can be

used to predict how much space the collector will waste.

For requirement F2, the amount of free memory in the heap is defined as:

|F | = |H| −
∑
o∈O

m(len(o)) (1.2)

This expression only depends on the collector through the use of the m(n) function.

The set O contains exactly those objects allocated using previous calls to Alloc(n,v)

that have not been freed yet by the collector. To be fragmentation tolerant, a collector

must ensure that an allocation Alloc(n,v) will succeed if:

m(n) ≤ |F | (1.3)

m(n) ≤ |H| −
∑
o∈O

m(len(o)) (1.4)

Example: the Semi-Space collector

Consider the SemiSpace collector as an example. This collector requires a 2-

location header, so the number of memory locations used for an object of length n

is at least n + 2. But only half of the heap is accessible at any time. One way to

account for this is to say that allocations in SemiSpace succeed if:

n + 2 ≤ |H|
2
−
∑
o∈O

len(o) + 2 (1.5)

An Alloc(n,v) is guaranteed to succeed if the above expression holds, since half

of the heap comprises the active to-space in which all objects in O are lined up

contiguously on one side, while the rest is contiguous free space. To make this fit the
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defintion of fragmentation tolerance (equation 1.4), the expression is restructured as

follows:

2(n + 2) ≤ 2

(
|H|
2
−
∑
o∈O

len(o) + 2

)
(1.6)

≤ |H| − 2
∑
o∈O

len(o) + 2 (1.7)

≤ |H| −
∑
o∈O

2(len(o) + 2) (1.8)

This allows the substitution m(n) = 2(n + 2), which fits both equation 1.4 and

satisfies the definition:

F1. Each allocation in SemiSpace indeed depletes n + 2 locations in both spaces.

First n + 2 locations are depleted in the active to-space. But n + 2 locations

are also reserved in from-space to ensure that the collector can perform copying

when invoked. Hence the total number of locations depleted by any allocation

is 2(n + 2).

F2. Plugging m(n) = 2(n + 2) into equation 1.4 ensures that if that equation holds

then the allocation will succeed.

F3. The expression 2(n + 2) is indeed affine.

Discussion

A collector is fragmentation tolerant if and only if a function m(n) can be defined

so that it satisfies requirements F1-F3 and equation 1.4 can be used to predict the

success or failure of allocations. The function m(n) cannot depend on anything other

than the collector and the requested length n; in particular it must be stateless

and have no knowledge of the set O or the structure of the heap H. Intuitively,

fragmentation tolerance means that the amount of wasted space in the heap grows

at worst linearly with the heap size. SemiSpace is fragmentation tolerant with

m(n) = 2(n+2), where the term n+2 arises from the collector prepending 2 memory
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cells to each object (forwarding pointer and length), and the 2× factor arises from

the collector splitting the heap into two spaces and allowing the program to use only

one of those spaces at a time. A precise definition of m(n) informs users about

the space efficiency of the collector. For example, this shows that SemiSpace will

waste roughly half of available memory. More sophisticated copying-based collection

algorithms such the one due to Haddon and Waite [9] can be used to remove the 2×

factor.

The MarkSweep collector is not fragmentation tolerant because there does not

exist a function m(n) that satisfies the definition. The best that MarkSweep can do

is m(n) = O(n log |H|) [7,8], assuming that the smallest object size is 1 and the largest

is |H|. This results directly from Robson’s formula for heap wastage (equation 1.1),

and implies that heap wastage grows super-linearly with heap size. A more precise

formulation can be derived if the object sizes used by the program are known a priori,

or if the collector artificially limits the possible sizes. None of these formulations fit

the definition of fragmentation tolerance, since they include a dependence on either

H or O or both. Even if the maximum and minimum object sizes were artificially

limited, MarkSweep would still perform poorly. For example, if the maximum

object size was 1024, then it would still be the case that m(n) ≈ 10n [8]; i.e. in the

worst case, about 90% of memory would be wasted as a result of fragmentation. The

lack of fragmentation tolerance in MarkSweep is due to the fact that this collector

may lead to free memory (the set F ) being fragmented into N discontiguous cells, so

the amount of memory available to any particular memory allocation request is not

necessarily related to F . Fragmentation tolerance is a crucial property for real-time

systems, as it gives the real-time software engineer the ability to predict both when

collections occur and when memory exhaustion will occur by just considering the size

of the heap and the set of objects allocated.
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bump(n) =

r ← bT

bT ← bT +n+2

wr(r, r)

wr(r+1, n)

OT ← OT + r

return r

copy(o) =

if fwd(o) in OT

return fwd(o)

else

r ← bump(len(o))

wr(o, r)

foreach i in [0,len(o)−1]

wr(r+2+i, rd(o+2+i))

return r

Store(o,i,v) →

wr(o+2+i,v)

v ← Load(o,i) →

v ← rd(o+2+i)

if v in OF

atomic

v ← copy(v)

o ← Alloc(n,v) →

atomic

if bT +n+1 ≤ max(HT )

l ← bump(n)

else

abort

foreach l’ in [l+2,l+n+1]

wr(l’,v)

return l

Figure 1.4: The transformations used by Baker. Note that collection work is done

by a separate thread, shown in Figure 1.5.
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loop

safepoint

OT ,OF ← OF ,OT

HT ,HF ← HF ,HT

bT ,bF ← bF ,bT

foreach t in T

foreach r in roots(t)

wr(r,copy(rd(r)))

while o in OT . refs(o) ∩ OF 6= Ø

foreach l in [o+2,o+len(o)+1]

atomic

wr(l,copy(rd(l)))

OF ← Ø

bF ← 0

Figure 1.5: The Baker collector thread.

1.2.9 Baker’s Collector

The main limitation preventing MarkSweep or SemiSpace from being used in

real-time systems is the large worst-case cost of Alloc. The Baker collector [10] is

an attempt to solve this problem by making SemiSpace incremental. The task of

freeing memory is split into small increments instead of collecting the whole heap

in one atomic step. Baker uses the same object representation and heap structure

as SemiSpace. This section shows a concurrent version of the Baker algorithm,

where a separate thread is used to perform most of the work of freeing memory. This

thread is always continuously running concurrently to program execution. Baker’s

original report [10] placed small increments of collector work in Alloc, which enables
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the collector to be automatically paced to keep up with new allocations. However,

modern implementations of Baker tend to use a purely concurrent approach [11].

Figure 1.4 shows the transformations used by Baker. The key to the Baker al-

gorithm is the definition of Load, which ensures that the value loaded is copied to

to-space prior to being used by the program. Baker uses this to maintain a to-space

invariant : though the program may be running concurrently to the collector, it only

ever touches the to-space. Because the collector is concurrent, the implementation of

Alloc does not perform any garbage collection work other than just allocating and ini-

tializing objects. Most of the work of garbage collection is done by a separate thread,

whose implementation is shown in figure 1.5. As part of ensuring the to-space invari-

ant, the collector thread begins by “flipping” all threads from from-space to to-space.

This is done by ensuring that all objects references by program variables are copied,

and that the references are updated.

Discussion. Baker is likely to lead to shorter pauses than either MarkSweep or

SemiSpace. While MarkSweep and SemiSpace have atomic and safepoint sections

that traverse the entire heap, Baker’s atomic sections perform less work at a time.

The break-down of the costs of atomic sections in Baker is as follows:

1. The atomic section in Load is O(|M(v)|); that is, it does work proportional to

the size of the object that was loaded.

2. The atomic section in Alloc is O(1).

3. The atomic section in the collector thread’s main copying loop is O(|M(v)|)

where v is the object being copied.

4. The safepoint section in the collector thread is:

Θ

 ∑
t in T

∑
r in roots(t)

|M(rd(r))|

 (1.9)
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Store(o,i,v) →

w ← rd(o+1+i)

atomic

L ← L + w

wr(o+1+i,v)

v ← Load(o,i) →

v ← rd(o+1+i)

o ← Alloc(n,v) →

atomic

if l . [l,l+n] in F

O ← O + k

F ← F − [l,l+n]

L ← L + l

else

abort

wr(l,n)

foreach w in [l+1,l+n]

wr(w,v)

return l

Figure 1.6: Transformations used by the CMS collector.

It is possible to reduce the atomic section for heap accesses and object copying to

O(1) using the approach of Herlihy and Moss [12], but this does not solve the bigger

problem: the resulting heap access algorithm is still O(|M(v)|) and is not wait-free. To

summarize, pauses in Baker will be small if objects are small (thus minimizing cases

1 and 3) and if the number of threads is small, and threads have few program variables

(to minimize case 4). For some systems, the guarantees provided by Baker are good

enough. But in a hard real-time system, the big worst-case cost of Load is problematic,

particularly since the performance is not predictable: some loads will complete in O(1)

time (if the object reference being loaded is already in OT ), while others will take

much longer. By contrast, in a MarkSweep or SemiSpace collector, Load is always
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loop

safepoint

L ← Ø

foreach t in T

foreach r in roots(t)

L ← L + rd(r)

while d in refs(s). d not in L and s in L

atomic

L ← L + d

while o in O . o not in L

atomic

O ← O − o

foreach l in M(o)

atomic

F ← F + l

Figure 1.7: The CMS collector thread.

just a single memory read that completes in O(1). Also, the Load implementation in

Baker is not wait-free since it relies on an atomic statement.

1.2.10 Concurrent Mark Sweep

The chief problem in Baker is the need to copy objects inside Load, which sac-

rifices the performance of Load in the worst case. But what if objects weren’t copied

at all, like in MarkSweep? It turns out that making a MarkSweep style collec-

tor concurrent is relatively straight-forward. The CMS (short for concurrent mark
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sweep) collector uses the same object representation as MarkSweep, and structures

the heap in an identical way, with the set H containing all possible heap locations,

the set O containing valid object references, the set F containing locations that are

free, and the set L being used to build up the set of reachable objects. But now

instead of doing the work on-demand inside of Alloc, work is done concurrently in a

separate thread. This approach is called CMS, or concurrent mark sweep. [13]

Running the collector concurrently to program execution may result in interference

between program operations (Load, Store) and the construction of the set L. Any

time that the program stores a reference that is not yet in L into an object that is

already in L, the collector may be forced to rescan an object that it had already

scanned. This may slow the collector down. Slow-downs of this type can lead to

the program running out of memory prematurely: if performing a Store causes the

collector to do more work, then the amount of work that the collector has to do

in order to free memory is no longer purely a function of the program’s allocation

behavior. Ideally, a concurrent collector will only be forced to do more work if the

program allocates more; this relationship can then be used to “pace” the collector

such that it keeps up with allocation [10,14–16]. Having to also pace it to keep up with

heap stores is more expensive, since stores are more common than allocations. Worse,

the program may load a reference v from object o, and then overwrite that reference

with a different one. This may cause v to never make it into the set L even though

the program has a reference to it. Subsequently the collector will delete the object

referenced by v, potentially leading to memory corruption. To prevent both scenarios,

the CMS collector uses a modified implementation of Store that immediately places

the old value of the object reference being overwritten into the set L [17]. This

change ensures that the set L will, in the end, contain all of those objects that a

MarkSweep collector would have had, if it performed the entire collection in one

atomic step. It may also contain some additional objects – for example those that

became unreachable during the current collection cycle – but all of those additional

objects are guaranteed to be freed on the next cycle.
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Figure 1.6 shows the transformations used by CMS, including the modified im-

plementation of Store. Figure 1.7 shows the collector thread.

Discussion. CMS has a major advantage over Baker: heap accesses are guaran-

teed constant-time. However, CMS uses a Store implementation that is not wait-

free, and thus it has less predictable behavior on heap mutation than either Mark-

Sweep or SemiSpace. The break-down of the costs of atomic sections in CMS is as

follows:

1. The atomic section in Store is O(1) assuming that the set L is implemented as

either a linked list or a bit-vector, or some combination of the two.

2. The atomic section in Alloc can be made O(1).

3. The atomic sections in the collector thread’s two main loops are O(1).

4. The safepoint section in the collector thread is Θ
(∑

t in T |roots(t)|
)
.

Other than the safepoint section, the CMS collector has smaller atomic sections

than Baker, which should lead to better response times for real-time tasks that

access the heap. But CMS is not fragmentation tolerant. Allocation requests may

fail even if there is enough memory to satisfy them, if those memory locations are

fragmented. Furthermore, CMS still has a potentially expensive safepoint section at

the start of collection. While the safepoint is executed relatively infrequently (once

per collection cycle), its cost scales linearly with the number of threads. Thus, each

real-time task will see pauses increase as the number of tasks in the system grows.

1.2.11 Doligez, Leroy, and Gonthier

The algorithm of Doligez, Leroy, and Gonthier (DLG) [18, 19] addresses one of

the shortcomings of CMS: it replaces the safepoint section in the collector thread

with a ragged safepoint. A ragged safepoint causes each thread to scan its own roots

and never pauses the whole system. A ragged safepoint returns once all threads
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Store(o,i,v) →

w ← rd(o+1+i)

atomic

L ← L + w

atomic

L ← L + v

wr(o+1+i,v)

v ← Load(o,i) →

v ← rd(o+1+i)

o ← Alloc(n,v) →

atomic

if l . [l,l+n] in F

O ← O + k

F ← F − [l,l+n]

L ← L + l

else

abort

wr(l,n)

foreach w in [l+1,l+n]

wr(w,v)

return l

Figure 1.8: The transformations used by DLG.

have performed the requested action. This blocks the collector, but never blocks any

program threads. This means that increasing the number of threads does not increase

the duration of the pause; it also means that threads wishing to have smaller pauses

can do so by simply reducing their root set.

DLG is similar to CMS; it uses the same object representation and heap structure.

Figure 1.9 shows the DLG collector thread. Instead of a safepoint, a ragged safepoint

is used. The first ragged safepoint does no work but is used to force all threads to

acknowledge that they are not currently executing any Store operations. The second

ragged safepoint initiates the root scan. Some threads may execute code prior to

scanning their roots – which may lead to them storing a not-yet-scanned value from
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loop

atomic

L ← Ø

ragged safepoint t in T

nop

ragged safepoint t in T

foreach r in roots(t)

atomic

L ← L + rd(r)

while d in refs(s). d not in L and s in L

atomic

L ← L + d

while o in O . o not in L

atomic

O ← O − o

foreach l in M(o)

atomic

F ← F + l

Figure 1.9: The DLG collector thread.

their roots into the heap. This requires a change in the Store transformation, as

shown in Figure 1.8: Store now places both the old value of the heap location being

overwritten, as well as the new value being written into that location, into the set

L. To appreciate the need for the no-op ragged safepoint, consider the following

interleaving: a thread t1 begins executing Store before the collector performs the

reset L ← Ø. Thus it modifies L before it is reset, and this modification is lost.
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Without the no-op ragged safepoint, a second thread t2 could already have its roots

scanned before the first thread, t1, has performed its update (wr(o+1+i,v)). The

second thread t2 could then read the old value of o+1+i using a Load, and only then

the first thread t1 overwrites that value by completing its Store operation. At this

point t2 will have a reference to the old value of o+1+i, but the collector will never

see this value, and hence never add it to L, because that value had been overwritten.

Having a no-op safepoint before the root scan safepoint eliminates this interleaving.

The second modification, where Store adds the new value stores to L, is necessary

due to the following interleaving. One thread, t1, allocates an object o after L is reset,

and stores it into some globally visible object p. A second thread t2, which has not

yet had its roots scanned, loads o from p and stores some object q that is in roots( t2)

into o, but then deletes q from its root set with an assignment. At this point o refers

to an object that is not visible from anywhere other than o, and forces the collector to

scan o before terminating its marking loop. This inhibits collector progress, since it

means that newly allocated objects must be inspected by the marking loop. Ideally,

objects allocated during marking should not have to be inspected by the collector, so

that the execution time of marking is only dependent on the number of live objects

at the start of the marking loop. Having Store mark the new value stored into an

object eliminates the need for the marking loop to inspect newly allocated objects,

and thus speeds up collector termination.

Discussion. The DLG collector eliminates the large overhead cost of the safepoint

operation in CMS, by replacing it with two ragged safepoints. In DLG, all atomic

sections are O(1) as in CMS, and the root scanning incurs a per-thread cost of

Θ(|roots(t)|). However, like CMS and MarkSweep, DLG is not fragmentation

tolerant.

This illustrates the principal trade-off in real-time garbage collection: collectors

that are fragmentation tolerant have asymptotically longer atomic sections, which

may make real-time tasks less responsive. Abandoning fragmentation tolerance yields
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faster response times, but makes allocation less deterministic by making it occasion-

ally fail if the heap gets fragmented.

1.2.12 Brooks’ Collector

One attempt to reduce the trade-off between fragmentation tolerance and respon-

siveness is the Brooks style of garbage collection [20]. Brooks is fragmentation

tolerant and has asymptotically fewer pauses than Baker. In Brooks, both Load

and Store are O(1), and Load is wait-free. This is accomplished by making the

collector incremental rather than concurrent: the collector proceeds by occasionally

stopping application execution with a safepoint that does a finite amount of collection

activity. The work done in a safepoint is bounded by object size and the number of

threads. Smaller objects lead to faster response times.

Brooks uses the same object representation as SemiSpace and Baker. Like

Baker, Load and Store operations access the to-space version of the object. But while

Baker accomplishes this by maintaining a to-space invariant on program variables,

Brooks allows variables to point to either space but redirects every access to the

to-space. From-space objects may be accessed in a Brooks collector if those objects

had not yet been copied to to-space.

Figure 1.10 shows the transformations used by Brooks, and Figure 1.11 shows

the Brooks collector thread. The collector proceeds by first using a safepoint to

copy all objects directly referenced from thread variables. Then it enters a loop that

uses a short safepoint to copy one object at a time. This means that unlike Baker,

where object copying can occur concurrently to program activity, Brooks must

stop program execution to copy objects. Because program variables may refer to

from-space, the Brooks implementation of Load and Store use the fwd operation to

ensure that the to-space version of objects is accessed unless it does not yet exist.

Additionally, it is possible for the application to store a not-yet-copied object into

the heap – a similar problem to the one seen in CMS. Baker did not have this
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bump(n) =

r ← bT

bT ← bT +n+2

wr(r, r)

wr(r+1, n)

OT ← OT + r

return r

copy(o) =

if fwd(o) in OT

return fwd(o)

else

r ← bump(len(o))

wr(o, r)

foreach i in [0,len(o)−1]

wr(r+2+i, rd(o+2+i))

return r

Store(o,i,v) →

w ← rd(fwd(o)+2+i)

atomic

if fwd(w) in OF

L ← L + w

wr(o+2+i,fwd(v))

v ← Load(o,i) →

v ← rd(fwd(o)+2+i)

o ← Alloc(n,v) →

atomic

if bT +n+1 ≤ max(HT )

l ← bump(n)

else

abort

foreach w in [l+2,l+n+1]

wr(w,v)

return l

Figure 1.10: The transformations used by Brooks.
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loop

safepoint

OT ,OF ← OF ,OT

HT ,HF ← HF ,HT

bT ,bF ← bF ,bT

L ← Ø

foreach t in T

foreach r in roots(t)

wr(r,copy(rd(r)))

loop

safepoint

if o in OT . refs(o) ∩ OF 6= Ø

foreach l in [o+2,o+len(o)+1]

wr(l,copy(rd(l)))

elsif o in L

copy(o)

L ← L − o

else break

OF ← Ø

bF ← 0

Figure 1.11: The Brooks collector thread.

problem because it copied objects on Load. Brooks addresses this problem in the

spirit of CMS, by placing the old value of the heap location being overwritten into

L. The collector thread ensures that all objects in L get copied to to-space even if

the collector does not find references to those objects in other objects it has already
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copied. The collector thread completes by using a safepoint to ensure that all thread

roots refer to to-space.

Discussion. Like Baker, Brooks has a safepoint pause of:

Θ

 ∑
t in T

∑
r in roots(t)

|M(rd(r))|

 (1.10)

But it improves on Baker by having Load and Store operations that are O(1).

Load is wait-free, but Store requires an atomic section. On the other hand, Brooks ex-

ecutes safepoints more frequently. Typical implementations of Brooks will insert a

delay into the loop in the collector thread (Figure 1.11), so that the collector will

copy some objects, wait a bit, and then copy some more. This can be used to cre-

ate a uniform slow-down to the application rather than having clusters of pauses.

This approach is used by Metronome [15]. Still, each time objects are copied by

Brooks, program execution is effectively halted. Brooks also suffers from having

asymptotically longer pauses than either CMS or DLG. Put together, this makes

Brooks attractive only for programs that can tolerate longer pauses. Real-time pro-

grams that have tight execution time requirements will require a more sophisticated

garbage collection strategy.

1.2.13 Cheng-Blelloch

One final attempt to make fragmentation tolerant collection exhibit shorter pauses

than Baker is the one due to Cheng and Blelloch [21]. Their collector adopts the

replicator approach originally introduced by Nettles and O’Toole [22]. This replaces

the to-space invariant of Baker with a from-space invariant, where the program ac-

cesses only the from-space until an entire collection cycle completes. While Cheng-

Blelloch still has the same safepoint pause as Baker and Brooks, it allows for

objects to be copied concurrently to program execution while guaranteeing that Load
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bump(n,s) =

r ← bs

bs ← bs+n+2

wr(r, r)

wr(r+1, n)

Os ← Os + r

return r

copy(o) =

if fwd(o) in OT

return fwd(o)

else

r ← bump(len(o),T )

wr(o, r)

foreach i in [0,len(o)−1]

atomic

wr(r+2+i, rd(o+2+i))

return r

Store(o,i,v) →

w ← rd(fwd(o)+2+i)

atomic

if fwd(w) in OF

L ← L + w

atomic

wr(o+2+i,v)

wr(fwd(o)+2+i,fwd(v))

v ← Load(o,i) →

v ← rd(o+2+i)

o ← Alloc(n,v) →

atomic

if bT +n+1 ≤ max(HT )

lF ← bump(n,F )

lT ← bump(n,T )

else

abort

wr(lF ,lT )

foreach w in [lF +2,lF +n+1]

wr(w,v)

foreach w in [lT +2,lT +n+1]

wr(w,fwd(v))

return lF

Figure 1.12: The transformations used by ChengBlelloch.
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loop

safepoint

foreach t in T

foreach r in roots(t)

copy(rd(r))

L ← Ø

loop

if o in OT . refs(o) ∩ OF 6= Ø

foreach l in [o+2,o+len(o)+1]

wr(l,copy(rd(l)))

elsif o in L

copy(o)

atomic

L ← L − o

else break

safepoint

foreach t in T

foreach r in roots(t)

wr(r,fwd(rd(r)))

OT ,OF ← OF ,OT

HT ,HF ← HF ,HT

bT ,bF ← bF ,bT

OT ← Ø

bT ← 0

Figure 1.13: The ChengBlelloch collector thread.
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and Store are O(1). Load is wait-free like in Brooks. ChengBlelloch combines

the best performance features of Baker and Brooks.

ChengBlelloch uses the same object representation as SemiSpace, Baker,

and Brooks. However, it departs from those collectors by mandating that the ap-

plication accesses the from-space instead of the to-space. Object modifications are

replicated to to-space to ensure that once copying finishes, flipping the two spaces can

be done transparently to the program.

Figure 1.12 shows the transformations used, and Figure 1.13 shows the collector

thread. The Load operation is identical to the one used in SemiSpace; this is possi-

ble because program variables point to from-space and the collector does not modify

the from-space. The Store operation is substantially more complex. First, it must

place the old value being overwritten in to-space into L; this is done for the same

reasons as in CMS and Brooks, and is essential for ensuring that the collector does

not corrupt memory by deallocating an object prematurely. Next, the ChengBlel-

loch implementation of Store atomically stores the same value into both from-space

and to-space. Another major difference in ChengBlelloch is that Alloc allocates

objects in both from-space and to-space. To allow for this, the bump function is

modified to be polymorphic over spaces; it takes a space variable s, which ranges over

{F, T} (from-space and to-space, respectively). Allocating in both from- and to-space

ensures that the object is already “copied” (so the collector does not have to visit

newly allocated objects) while also ensuring that the application only ever sees the

from-space.

Discussion. ChengBlelloch results in the best of both Baker and Brooks:

heap accesses are O(1), Load is wait-free, and object copying can be done in fine-

grained increments (the atomic section for copying is O(1)). However, the safepointing

pause is still Θ
(∑

t in T
∑

r in roots(t) |M(rd(r))|
)
. Cheng and Blelloch argue that this

can be reduced by using stacklets, where the program roots are split into small pieces

and are scanned incrementally. However, the stacklet approach still results in the



38

worst-case pause scaling linearly with the number of threads and linearly with the

worst-case object size. A further problem with ChengBlelloch is that it still

requires a non-wait-free atomic section on Store.

1.3 Qualitative Review of Garbage Collection and Real-time

Real-time programming places an emphasis on worst-case performance in addi-

tion to correctness. If a system can be proved analytically to have deterministic

performance (i.e. multiple runs will show identical behavior), then worst-case bounds

can be demonstrated empirically. This emphasis on deterministic performance is the

main reason why simple collectors like MarkSweep and SemiSpace are not good

enough for most real-time systems. Both of these collectors will give good perfor-

mance on most Alloc calls, but sometimes Alloc will run much slower (O(|H|) in

the worst case). This has motivated a number of real-time garbage collection algo-

rithms, which succeed, to varying extents, in reducing this worst-case pause by having

most of the collector’s work occur concurrently to program execution. This allows

the program to preempt the collector, rather than being preempted by it. But all

currently known concurrent collectors achieve concurrency by removing other guaran-

tees. Wait-freedom is one such guarantee, which happens to be provided by the simple

non-real-time collectors (MarkSweep and SemiSpace). Wait-freedom is essential

in real-time systems, since without it, a Load or Store may suddenly take longer just

because another thread has also executed a Load or Store. None of the real-time

collectors provide wait-free heap access; all of them require a non-wait-free atomic

section in either Store or Load. Real-time systems also tend to have strict correctness

requirements; returning a wrong result on time is typically no better than returning

the correct result late. Guaranteeing correctness implies guaranteeing that the pro-

gram will not run out of memory prematurely. In a dynamically managed heap, it is

possible that fragmentation may lead to a program appearing to run out of memory

even though the total amount of free memory is sufficient to satisfy Alloc requests.
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SemiSpace, Baker, Brooks, and ChengBlelloch all provide fragmentation tol-

erance, but do so by either not being concurrent (like Brooks and SemiSpace), or

by requiring a large pause at the start of collection (Baker, Brooks, ChengBlel-

loch). CMS and DLG provide the best guarantees in time, with DLG eliminating

the need to ever stop the program from executing. In that sense, DLG can be said

to be completely concurrent, in that it never preempts the program to do any work.

But CMS and DLG are not fragmentation tolerant, and will fail to provide alloca-

tion guarantees once the heap is fragmented. In short, there is currently no known

collector that can provide O(1) and wait-free heap access and fragmentation tolerance

without needing to stop program execution.

1.4 Thesis Statement

The thesis of this dissertation is that real-time garbage collection can be made to

provide wait-free heap access and fragmentation tolerance while eliminating the need

to stop program execution.

This work will design and implement a suite of real-time garbage collectors that

combine:

Wait-free heap access. The Load and Store operations will be O(1) and wait-free.

That is, their performance will be O(1) even in the face of concurrent activity

either by other program threads, or by the collector.

Fragmentation tolerance. The collectors will be proved to exhibit fragmentation

tolerance by giving a function m(n) ≈ 1.3n and proving that it fits the definition.

Concurrency. The collectors will never stop program execution. At worst, the col-

lectors will use a ragged safepoint to request all threads to perform some small

action such as reporting their roots.

Linear-time allocation. The Alloc operation will be O(n) where n is the number of

bytes allocated, and not necessarily wait-free (i.e. it may use an atomic section,
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which may require one thread blocking while another allocates). The details of

how linear-time allocation is implemented will be shown.

Good throughput. The collectors will exhibit throughput of execution that is com-

petitive against state-of-the-art production collectors.

Each of these properties are proved analytically and demonstrated empirically on

a variety of real-time and non-real-time benchmarks. The implementation of these

collectors is done in a combination of the Microsoft Bartok Research Compiler and

the Fiji VM. For experiments with Bartok, the Microsoft Research benchmark suite

is used, which includes benchmarks like SatSolver (a boolean satisfiability solver),

LcscBench (a .NET compiler), Bartok (the Bartok compiler itself), and other large

programs from inside Microsoft. A .NET version of the SPECjbb2000 benchmark

will also be used. For experiments with Fiji, the benchmarks include SPECjvm98,

SPECjbb200, and the CDx real-time benchmark. Bartok experiments are run on a

Windows Server Intel machine, and Fiji experiments are run on a Linux Intel machine

and a RTEMS LEON3 board.

This dissertation is organized as follows. A concurrent mark-sweep style garbage

collector with wait-free heap accesses is introduced in Chapter 2, implemented in the

Fiji VM, and evaluated by comparing the performance of Java code running with

this collector to C code that uses no garbage collection at all, as well as competing

Java virtual machines and garbage collectors. Mechanisms for performing concurrent

copying with non-blocking O(1) heap accesses are shown in Chapter 3. Prototypes of

these techniques are implemented in Bartok and evaluated using a variety of .NET

benchmarks. Chapter 4 introduces a hybrid approach, which combines fragmented

allocation and replication-style copying, to provide wait-free O(1) heap accesses and

fragmentation tolerance. A proof of fragmentation tolerance is given, and the collector

is implemented in Fiji VM, and compared to the collector from Chapter 2 as well as a

broad collection of commercial garbage collectors. Finally, Chapter 5 concludes and

offers thoughts on future work in the real-time garbage collection field.
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2 WAIT-FREE CONCURRENT MARK REGION GARBAGE COLLECTION

Fragmentation tolerance is just one of the features that the garbage collectors in

this dissertation aim to implement; the goals also include a fast allocation algorithm

(O(n) for every n bytes allocated) and a fast O(1) wait-free heap access protocol

(O(1) regardless of concurrent collector or application activity). This chapter intro-

duces CMR, a garbage collector that will serve as a stepping stone for implementing

a fully fragmentation tolerant concurrent collector. CMR provides wait-free O(1)

implementations of Store and Load, while ensuring that Alloc(n,v) requires O(1) time

to locate free memory for sufficiently small allocations or if there is no fragmentation;

the total allocation cost is O(n) but only due to the need to install the initial value

v in the object payload.

All previously known garbage collectors require some application operations to

block. This is true even if fragmentation tolerance is not considered. In a Mark-

Sweep collector, the Alloc operation may block to wait for a garbage collection cycle

to finish. Subsequent improvements on MarkSweep, such as CMS and DLG, allow

for a fast O(n) Alloc(n,v) operation that at worst blocks for other concurrent Alloc

operations to finish, but at the cost of having an atomic section in Store. As a result,

storing a new value into the heap may cause the application to wait for other opera-

tions. This may be either another Store operation executed in a different application

thread, or some atomic operation in the collector thread.

The atomic section in Store arises out of the need to inform the collector of changes

to the heap. The need for such a notification is an inherent property of concurrent

collection [13]. CMR addresses this problem using ragged safepoints instead of atomic

sections as the mechanism for coordination between the application and collector.

This chapter is structured as follows. The first section discusses the solution to

wait-free Store using the same level of abstraction as was used to present DLG.
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Subsequent sections dive deeper into the algorithm, concluding with a presentation

of the complete CMR collector implemented in the Fiji VM along with a detailed

empirical performance report.

2.1 Wait-free Store using Logging with Ragged Safepoints

The CMR algorithm closely resembles DLG, but removes the need for an atomic

section in Store. Application threads in CMR never access collector-global data

structures such as L except during allocation, which is still allowed to block. This

is accomplished by having a thread-private log L[t]. In order to inspect what heap

modifications have been performed by the application threads, the collector must

use a ragged safepoint to check if any heap modifications pertinent to the marking

loop have been performed. Marking thus becomes a fixpoint, which terminates when

concurrent modifications to the heap only involve objects already in L.

Termination is guaranteed because each iteration of the loop grows L, either by

finding new objects not in L that are reachable from L, or by finding new objects

that have been manipulated by the application. The application can only manipulate

objects that are either reachable at the start of collection, or objects that have been

newly allocated.

A simple version of CMR is shown in Figures 2.2 and 2.1. This version does

not consider how the log is represented. The näıve approach would be to assume

that there is sufficient space to store potentially redundant logs in each thread. But

this appears to introduce a problem similar to fragmentation: the space usage of the

collector is strictly greater than the sum of the sizes of objects in the heap, since it

is also necessary to account for O(|T | × |L|) space for the logs.

2.1.1 Compact Thread-Private Object Logging

Thus far, the notation used to describe garbage collectors in this dissertation has

assumed that the auxiliary sets (L, O, F , etc.) are represented as bitvectors outside
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loop

atomic

L ← Ø

ragged safepoint t in T

nop

ragged safepoint t in T

foreach r in roots(t)

L[t] ← L[t] + rd(r)

atomic

L ← L + L[t]

loop

while d in refs(s). d not in L and s in L

atomic

L ← L + d

L′ ← Ø

ragged safepoint t in T

atomic

L′ ← L′ + L[t]

if L + L′ = L

break

L ← L + L′

while o in O . o not in L

atomic

O ← O − o

foreach l in M(o)

atomic

F ← F + l

Figure 2.1: The CMR-simple collector thread.
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Store(o,i,v) →

w ← rd(o+1+i)

L[self] ← L[self] + w

L[self] ← L[self] + v

wr(o+1+i,v)

v ← Load(o,i) →

v ← rd(o+1+i)

o ← Alloc(n,v) →

atomic

if l . [l,l+n] in F

O ← O + k

F ← F − [l,l+n]

L ← L + l

else

abort

wr(l,n)

foreach w in [l+1,l+n]

wr(w,v)

return l

Figure 2.2: The transformations used by CMR-simple.

of the heap. But this does not scale, if each thread has its own copy of L. Thankfully,

L has a particular use pattern that permits a compact representation even when using

thread-private logging:

1. A thread only needs to log an object if that object is not already in the global

log L.

2. The log is only used to (i) check if an object is already logged, (ii) add an

object if it is not already in the log, and (iii) enumerate over the set of logged

objects.

3. The marking loop is inteded to be implemented as a graph search. A graph

search can be implemented in O(|H|) time as a loop that processes a worklist
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mark(o, W ) =

if CAS(o, 0→1) = 0

wr(o+1, W .head)

if W .tail = 0

W .tail ← o

W .head ← o

transfer(W1→W2) =

if W1.head 6= 0

wr(W1.tail+1, W2.head)

W2.head ← W1.head

W1.head ← 0

W1.tail ← 0

dequeue(W ) =

o ← W .head

if o = 0

return 0

W .head ← next(o)

if W .tail = o

W .tail ← 0

return o

Figure 2.3: Helper functions for CMR-compact.

W containing objects whose outgoing references have yet to be inspected. Each

iteration removes exactly one object from W , inspects its references (d in refs(s)),

and for each d, adds it to W and L if it is not already in L. The worklist W can

be implemented as a linked list, while the set L can be implemented as a per-

object flag that determines if the object had already been marked.

CMR uses thread-private worklists W [t], a collector worklist W , and a global

log L. Each data structure requires a constant amount of space per thread, and a

constant amount of overhead per object. The object structure is modified by adding
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two additional fields: a log flag flag(o) that indicates if the object is in L, and a link

field next(o) that is used for the worklist W . Because of property (1) above, an object

only needs to be on one worklist at a time. W and W [t] thus become just pairs

of integers: W .head for the head of the list and W .tail for the tail. These contain

the value 0 if there is not object enqueued; it is assumed that the heap is arranged

such that 0 can never be a valid object location. To allow for future changes in

the object structure to support fragmentation tolerance, the collector abstracts the

size and shape of the header using the constant headsize, which gives the size of the

header, and the functions len2size(n), which gives the size of an object of length n

and is shorthand for n+headsize, size(o), which is shorthand for len2size(len(o)), and

location(o,i), which gives the location of object payload element i and is shorthand for

o+headsize+i.

flag(o) = rd(o) next(o) = rd(o+1)

len(o) = rd(o+2) headsize = 3

len2size(n) = n+headsize size(o) = len2size(len(o))

location(o,i) = o+headsize+i M(o) = [o, o+size(o)−1]

refs(o) = {rd(location(o,i)) . i in [0, len(o)−1] }

The algorithm for marking an object – used by both the Store implementation

and by the marking loop – must atomically check if the object is not already marked

(flag(o) = 0) and if not, mark it. This requires an atomic compare-and-swap on the

flag:

atomic

if flag(o) = 0

wr(o, 1)

This can be done without blocking on modern hardware1 using a dedicated in-

struction CAS(l, c →v) where l is a memory location, c is an expected value, and v is

the new value. Marking uses CAS(o, 0→1). CAS is assumed to be wait-free, atomic

1Atomic CAS is supported on any Intel microprocessor since the i486, any PowerPC, any ARM since
version 7, or any SPARC since version 9.
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Store(o,i,v) →

w ← rd(location(o,i))

mark(w, W [self])

mark(v, W [self])

wr(location(o,i),v)

v ← Load(o,i) →

v ← rd(location(o,i))

o ← Alloc(n,v) →

atomic

if l . [l,l+len2size(n)−1] in F

O ← O + k

F ← F − [l,l+len2size(n)−1]

else

abort

wr(l,0)

mark(l, W [self])

wr(l+1,0)

wr(l+2,n)

foreach i in [0,n−1]

wr(location(l,i),v)

return l

Figure 2.4: The transformations used by CMR-compact.

with respect to other memory accesses (wr and rd), but not atomic with respect to

atomic sections. It always returns the previous value at memory location l (in this

case the previous value of the flag).

This can be used to implement a mark(o, W ) operation that operates over some

workist W , which may be either the global worklist or a thread-private worklist W [t].

The mark function is wait-free so long as CAS is wait-free, since it never loops and has

no atomic sections. Another helper function transfer(W1→W2) is needed to transfer

the entire contents of one worklist into another, as well as dequeue(W ) to dequeue the

first object from the worklist. These are shown in Fig. 2.3. Fig. 2.4 shows the new
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loop

ragged safepoint t in T

nop

ragged safepoint t in T

foreach r in roots(t)

mark(rd(r), W [t])

atomic

transfer(W [t]→W )

while W .head 6= 0

while W .head 6= 0

s ← dequeue(W )

foreach d in refs(s)

mark(d, W )

ragged safepoint t in T

atomic

transfer(W [t]→W )

foreach o in O

if flag(o)

wr(o, 0)

else

atomic

O ← O − o

foreach l in M(o)

atomic

F ← F + l

Figure 2.5: The CMR-compact collector thread.
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transformations of CMR-compact; the only change from CMR-simple is the use of

mark in the implementation of Store.

A näıve version of the collector loop of CMR-compact is shown in Figure 2.5.

It uses ragged safepoints in conjunction with transfer to atomically steal all threads’

private worklists in O(1) time. The atomic section in the body of the ragged safepoint

can be safely omitted if each thread is visited one at a time; its inclusion in the

algorithm is only to allow for the case where threads are visited in parallel. The

marking loop is modified to poll the global collector worklist. Each inner loop iteration

operates on the collector worklist only. Once this is emptied, the collector attempts

to steal objects from thread-private worklists. Marking terminates once there are

no objects on any worklist. The sweeping loop no longer makes use of the set L,

instead looping over all objects in O and using flag(o) to determine if those objects

are marked. The full collector loop algorithm is shown in Fig. 2.5.

Discussion. The CMR-compact algorithm achieves O(1), wait-free heap accesses

while ensuring that storage for the worklists W and the log L is O(|O|+|T |). However,

this algorithm has flaws. Objects allocated or stored during the sweep phase will be

marked, leading them to be considered live during the next collection. This increases

space usage, because the set of objects marked during a collection will be larger than

just the set of objects live at the start of that collection. Worse, it is possible for an

object to be marked and enqueued onto a worklist but then have its flag reset by the

sweep. This can lead to it being remarked, with the objects that were on the worklist

after it (via its next(o) reference) being lost from the worklist. Thus, some objects

marked during the sweep might not be on the worklist during the next collection.

Since they will not get scanned during the next mark phase, any objects that they

have references to may be “hidden” from the collector leading them to be reclaimed

prematurely. The techniques used to fix this aspect of the algorithm are considered

in the next section.
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2.1.2 Phased On-the-fly Marking

Ensuring that objects only get marked by Alloc and Store when the collector is in

the marking loop requires introducing a new variable, phase, which denotes the current

collector phase. phase is a global integer variable that ranges over [1, 4], where each

value indicates a distinct phase of the collector thread’s main outer loop. The CMR-

phased algorithm extends CMR-compact by explicitly tracking phase by setting its

value in the collector thread, and querying its value in Alloc and Store to special-case

their mark-related operations based on the phase.

Store and Alloc should perform different kinds of marking. Store should flag the

object and place it on a worklist, while Alloc should just flag the object without

placing it on any worklists. This ensures that objects allocated during marking can

be skipped over by the collector. But it also means that no newly allocated object

ever refers to objects that haven’t been marked. To ensure this property, CMR-

phased enables marking in Store before it enables marking in Alloc. The phases of

CMR-phased are as follows:

1. Idle. The collector is not operating.

2. Init. The collector is beginning initialization. Objects should be marked by

Store, but not by Alloc.

3. Mark. The collector is in the mark phase. Both Store and Alloc should start

marking objects.

4. Sweep. The mark phase is over. Objects should not be marked anymore by

Store, but objects allocated by Alloc should be flagged to ensure that they

survive the sweep.

Objects allocated during the sweep may survive into the next collection with the

flag bit set. This has a dangerous outcome: the next collection will never inspect the

object, meaning that none of its outgoing edges will be inspected. This would allow

the application to accidentally “hide” a live object behind the flagged survivor, leading
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Store(o,i,v) →

if 2 ≤ phase ≤ 3

w ← rd(location(o,i))

mark(w, W [self])

mark(v, W [self])

wr(location(o,i),v)

v ← Load(o,i) →

v ← rd(location(o,i))

o ← Alloc(n,v) →

atomic

if l . [l,l+len2size(n)−1] in F

O ← O + k

F ← F − [l,l+len2size(n)−1]

else

abort

if 3 ≤ phase ≤ 4

wr(l,1)

else

wr(l,0)

wr(l+1,0)

wr(l+2,n)

foreach i in [0,n−1]

wr(location(l,i),v)

return l

Figure 2.6: The transformations used by CMR-phased.

to the hidden object never being marked and subsequently being swept. This is part

of the reason for the Idle phase: the Idle phase serves as a pre-sweep that ensures

that no object in the heap is flagged. Figures 2.6 and 2.7 show the transformations

and collector thread used by CMR-phased.

Discussion. CMR-phased ensures that objects that became unreachable during

one collection cycle but survived – either because they had just been allocated or

because they died after being marked – will be collected on a subsequent collection
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loop

foreach o in O

wr(o,0)

phase ← 2

ragged safepoint t in T nop

phase ← 3

ragged safepoint t in T nop

ragged safepoint t in T

foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

while W .head 6= 0

while W .head 6= 0

s ← dequeue(W )

foreach d in refs(s) mark(d, W )

ragged safepoint t in T

atomic transfer(W [t]→W )

phase ← 4

ragged safepoint t in T nop

foreach o in O

if flag(o) wr(o, 0)

else

atomic O ← O − o

foreach l in M(o)

atomic F ← F + l

phase ← 1

Figure 2.7: The CMR-phased collector thread.
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cycle. But it does so at the expense of adding one more heap traversal (the Idle phase

fix-up of flag bits), while also decreasing the determinism of Store by having calls to

mark that are guarded by phase. Thus, Store will sometimes be fast and sometimes

be slow.

2.1.3 Collector Phasing using Rotating Flags

This section shows CMR-rotating, which turns the Idle phase clean-up of flag

bits into a simple O(1) operation while making Store exhibit more predictable perfor-

mance. This is accomplished by changing the meaning of flag(o). Instead of having

0 mean unmarked and 1 mean marked, CMR-rotating will flip the meaning of the

flag from one collection to the next – on one collection 1 means marked, while on the

next collection 1 will mean unmarked. This is accomplished by introducing two new

global integer variables, fM and fA. fM is the flag value that corresponds to an object

being marked. fA is the flag value stored by Alloc. Figure 2.8 shows the new mark al-

gorithm. The application now guards marking by simply checking if flag(o) is not fM ;

the common case is that the object is already marked, which is guaranteed to happen

in phases 1 (Idle) and 4 (Sweep). Figures 2.9 and 2.10 show the transformations and

collector thread used by CMR-rotating.

The collector’s flipping of fM and the mark(o) function’s use of fM have a race,

which mark(o) protects against by also checking phase. It is possible for one thread to

observe the new value of fM and mark the object. But another thread may still see

an old value of fM , and “unmark” the object based on this old value. This will occur

because marked objects will appear unmarked if a thread is using the old value of fM .

Hence a new ragged safepoint is added to ensure that the application acknowledges

entry into the idle phase. fM is flipped during phase 1 (Idle), and mark(o) is designed

to bail out of marking objects during this phase. Only after all threads acknowledge

the new value of fM with a ragged safepoint does the collector flip the phase to 2

(Init). It then waits for another acknowledgment.
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mark(o, W ) =

if flag(o) 6= fM

if phase 6= 1

if CAS(o, !fM→fM ) = !fM

wr(o+1, W .head)

if W .tail = 0

W .tail ← o

W .head ← o

Figure 2.8: Mark function for CMR-rotating.

Discussion. The CMR-rotating collector achieves wait-free O(1) Store while ensur-

ing fast collector termination and prompt deletion of stale objects. But this algorithm

can be improved further by simplifying the Store transformation so that it only has

to call mark(o) once.

2.1.4 The Quick Store Optimization

The Store transformation of DLG-based collectors such as CMR-rotating marks

both the old value of the field as well as the new value being stored. Marking the

old value increases the cost of Store, as it requires first loading the value, and then

executing the mark(o) function. Marking the old value is necessary in CMR-rotating

because the collector only scans thread roots once. After this scan completes, the

application must ensure that any values that were transitively reachable from that

original root scan continue to be visible to the collector. This is accomplished by

marking any heap edges that are erased by Store.
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Store(o,i,v) →

w ← rd(location(o,i))

mark(w, W [self])

mark(v, W [self])

wr(location(o,i),v)

v ← Load(o,i) →

v ← rd(location(o,i))

o ← Alloc(n,v) →

atomic

if l . [l,l+len2size(n)−1] in F

O ← O + k

F ← F − [l,l+len2size(n)−1]

else

abort

wr(l,fA)

wr(l+1,0)

wr(l+2,n)

foreach i in [0,n−1]

wr(location(l,i),v)

return l

Figure 2.9: The transformations used by CMR-rotating.

CMR-quickstore, shown in Figures 2.11 and 2.12, is an optimized version of CMR-

rotating that eliminates the need for marking the old value in Store by having the

collector thread’s marking fixpoint loop rescan thread roots. This degrades the worst-

case execution time of the collector if nothing is known about scheduling: if a thread

loads a value from the heap, erases any edges to it in the heap, and then permanently

saves that value in roots(t) then the collector will have to rescan its stacks. If the thread

does this repeatedly then the number of stack scans performed will be O(|roots(t)|).
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loop

ragged safepoint t in T nop

fM ← !fM

ragged safepoint t in T nop

phase ← 2

ragged safepoint t in T nop

phase ← 3

fA ← fM

ragged safepoint t in T nop

ragged safepoint t in T

foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

while W .head 6= 0

while W .head 6= 0

s ← dequeue(W )

foreach d in refs(s) mark(d, W )

ragged safepoint t in T

atomic transfer(W [t]→W )

phase ← 4

foreach o in O

if flag(o) 6= fM

atomic O ← O − o

foreach l in M(o)

atomic F ← F + l

phase ← 1

Figure 2.10: The CMR-rotating collector thread.
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Store(o,i,v) →

mark(v, W [self])

wr(location(o,i),v)

v ← Load(o,i) →

v ← rd(location(o,i))

o ← Alloc(n,v) →

atomic

if l . [l,l+len2size(n)−1] in F

O ← O + k

F ← F − [l,l+len2size(n)−1]

else

abort

wr(l,fA)

wr(l+1,0)

wr(l+2,n)

foreach i in [0,n−1]

wr(location(l,i),v)

return l

Figure 2.11: The transformations used by CMR-quickstore.

Hence the total execution time of stack scanning performed by the collector thread

during one collection cycle increases to:

O

 ∑
t in T

|roots(t)|2
 (2.1)

Such program behavior is unlikely since roots(t) is typically finite and has a stati-

cally known size, which precludes the program for repeatedly saving additional values

within its local variables.2 Furthermore, the interleavings necessary for this worst-

case to happen will not occur if the collector is allowed to complete some minimal

2The size of roots(t) could become arbitrary through the use of recursive functions, however the
use recursive functions is discouraged in real-time systems precisely because they make it difficult
to bound the amount of memory needed for thread-local storage.
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loop

ragged safepoint t in T nop

fM ← !fM

ragged safepoint t in T nop

phase ← 2

ragged safepoint t in T nop

phase ← 3

fA ← fM

ragged safepoint t in T nop

ragged safepoint t in T

foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

while W .head 6= 0

while W .head 6= 0

s ← dequeue(W )

foreach d in refs(s) mark(d, W )

ragged safepoint t in T

foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

phase ← 4

foreach o in O

if flag(o) 6= fM

atomic O ← O − o

foreach l in M(o)

atomic F ← F + l

phase ← 1

Figure 2.12: The CMR-quickstore collector thread.
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amount of marking work before yielding to the application. Common strategies for

real-time collector scheduling [14,15] typically ensure that the collector is allowed to

perform a longer-duration quantum of work before the application preempts it. In

this case, the number of root scans performed by the collector will be bounded by the

number of collector work quanta per collection cycle.

Discussion. The CMR-quickstore optimization has both benefits and drawbacks.

Because it improves end-to-end throughput, CMR has it enabled by default, but it

can be disabled by setting the quickstore compile-time parameter to false.

Both CMR-rotating and CMR-quickstore abstract away how memory is orga-

nized. Nothing is said about how the set of free memory locations F is implemented,

and what costs are associated with searching this set when allocating, or adding to

this set when sweeping. The goal with CMR is to ensure that small objects get

allocated rapidly. The sections that follow show how CMR accomplishes this goal by

going into greater depth about how free memory is organized.

2.2 Region-based Free Memory Organization

The CMR-rotating and CMR-quickstore algorithms ensure O(1) wait-free Store.

But an additional goal of CMR is to enable fast O(n) allocation of objects, if they

are sufficiently small or if fragmentation is nonexistent. These two properties will be

leveraged by subsequent garbage collection algorithms discussed in this dissertation

in order to provide fragmentation tolerance.

Collectors such as SemiSpace provide O(n) allocation by using a bump pointer.

The intuition of CMR is to make the SemiSpace-style bump-allocation mechanism

work in a MarkSweep-style concurrent collector. CMR accomplishes this by or-

ganizing memory into fixed-size pages and variable-size lines, collectively known as

regions. This approach to organizing the heap is not new to CMR. The best known

account of how to implement mark-region memory management is the description

and evaluation of Blackburn and McKinley’s Immix [23]. Immix is a high-throughput
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stop-the-world collector. It does not attempt to make collection concurrent. Instead,

it takes advantage of common-case bump pointer allocation to increase the end-to-end

performance of programs. CMR can be viewed as adopting the Immix approach to

a concurrent setting.

The CMR heap H is partitioned into pages. The page size, pagesize, is chosen

so that it is larger than most typical memory allocation requests. CMR uses 1024

memory locations for a page3. The collector tracks the status of pages (whether they

are in use or free) in addition to tracking the status of objects. When a page is

not completely free but does have some free space, the free space is coalesced into

lines. Free lines are managed using a header in each page, whose size is pageheadsize

(normally 32 locations with a 1024 location page size). This header contains a link

pointer for the line free list, and page bits that indicate which locations within the

page are in use and which are free.

Allocation requests of size greater than pagesize−pageheadsize require finding a

contiguous set of free pages. While this can be done in O(1) time using a trie [24],

this dissertation does not consider this optimization and uses a O(|H|) search over

all pages when the allocation request is large. For allocation requests smaller than

pagesize−pageheadsize, each thread maintains a currently active allocation region (which

may be either a page or a line) and attempts to perform a bump allocation within

that region. If the region is exhausted, the collector will find a free line that is large

enough to satisfy the request; if this fails, the collector will find the next free page.

This leads to the following performance characteristics:

• Allocation requests for the smallest possible object size always complete in O(1)

because the first line, if one exists, will satisfy the request. The smallest possible

object size can be artificially restricted to ensure that this property holds for

all requests n ≤ nmin for any value of nmin. On the other hand, making nmin

too large will result in wasted space if n is often significantly smaller.

3On a 32-bit system, where each slot within an object is 4 bytes, this would translate to 4096 bytes.
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• If the collector is augmented with a mechanism to defragment pages (i.e. evac-

uate the contents partially-but-not-fully inhabited pages to another part of the

heap), then all requests for n ≤ pagesize−pageheadsize will succeed in O(n) time.

Most of that time will be devoted to initializing the values in the object to v,

since the time required to find free space (i.e. the time devoted to bumping the

allocation pointer or removing the next free page from the page free list) will

be O(1). If pages are fragmented, then in the worst case all of the free lines

will have to be searched leading to O(|H|) performance. This search could be

turned into O(1) performance using some variant of segregated fit [3,24], where

a separate list of free lines is maintained for each class of sizes.

• Requests for objects n > pagesize−pageheadsize require O(|H|) time unless some

mechanism is used to split large objects [15] or if the external fragmentation

of pages is addressed using hardware memory management techniques [11, 25],

in which case finding free space for large objects will take O(1), and allocation

will take a total of O(n) due to object initialization..

In summary, CMR by itself achieves good performance for small objects or if there

is no fragmentation, but poor worst-case performance otherwise. However, it can be

augmented with known techniques to bring the worst-case performance down. Even

then however, there is no known way of performing evacuation of partially occupied

pages concurrently to the program without introducing blocking into either Load or

Store or both. Thus the purpose of CMR is to provide a solid baseline as well as a

stepping stone for reasoning about concurrent wait-free fragmentation tolerance.

The full details of CMR’s implementation are given in the Appendix. The re-

mainder of this section considers only the high-level issues that will be relevant to the

implementation of garbage collectors in subsequent chapters.



62

shadeObject(o) =

shadeBlock(o,size(o))

Figure 2.13: Helper function for shading the page and line associated with an object.

2.2.1 Memory Shading

CMR’s sweep algorithm does not consider objects; it only considers locations in

H. Each location may either be in-use or dead; if multiple contiguous locations are

dead then they are coalesced and placed either on the line free list, or the page free

list. Tracking in-use locations is done by setting the page bits in the page header. The

collector implements the shadeBlock(base,size) function which sets the appropriate bits

in the header that correspond to locations starting at base and ending at base+size−1.

During marking, the notion of live objects is translated into live locations by calling

shadeObject(o) on each object marked. This function, shown in Fig. 2.13, simply calls

shadeBlock(o,size(o)). CMR is designed as a foundation for building more sophisticated

collectors, which may have other object representations. Some collectors, notably the

ones introduced in Chapter 4, override shadeObject(o) to support object structures

that involve more than one block of memory.

2.2.2 Transformations

CMR uses Store and Load transformations that subsume both CMR-rotating and

CMR-quickstore based on the quickstore compile-time flag. CMR has a different Alloc

transformation, which leverages the allocRaw(n) helper function. allocRaw(n) locates

free memory using CMR’s page and line search; Alloc then initializes that memory

to create an object. The transformations used by CMR are shown in Figure 2.14.
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Store(o,i,v) →

if not quickstore

w ← rd(location(o,i))

mark(w, W [self])

mark(v, W [self])

wr(location(o,i),v)

v ← Load(o,i) →

v ← rd(location(o,i))

o ← Alloc(n,v) →

l ← allocRaw(len2size(n))

wr(l,fA)

wr(l+1,0)

wr(l+2,n)

foreach i in [0,n−1]

wr(location(l,i),v)

return l

Figure 2.14: The transformations used by CMR.

2.2.3 Collector Thread

The CMR collector thread proceeds similarly CMR-rotating and CMR-quickstore.

It uses the compile-time quickstore flag to determine if thread roots need to be res-

canned during the marking loop, which is necessary when the CMR-quickstore op-

timization is in use. Other changes are introduced to accomodate memory shad-

ing (the call to shadeObject(o)), and sweeping (the calls to sweepPagesAndLines() and

sweepLargeObjects()), and post-sweeping to clean up page tables. The complete col-

lector thread is shown in Figure 2.15. Full details of how free space management,

allocation, memory shading, and sweeping are performed are shown in the Appendix.



64

loop

ragged safepoint t in T nop

fM ← !fM

ragged safepoint t in T nop

phase ← 2

ragged safepoint t in T nop

phase ← 3

fA ← fM

ragged safepoint t in T nop

ragged safepoint t in T

foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

while W .head 6= 0

while W .head 6= 0

s ← dequeue(W )

shadeObject(s)

foreach d in refs(s) mark(d, W )

ragged safepoint t in T

if quickstore foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

phase ← 4

sweepPagesAndLines()

sweepLargeObjects()

phase ← 1

postSweep()

Figure 2.15: The CMR collector thread.
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2.2.4 Discussion

CMR is designed to be a high-throughput, low-latency collector with wait-free

heap accesses and O(n) object allocation so long as objects are small or fragmentation

is minimal. It accomplishes these goals by using a bump-pointer allocator in the

common case, and rapidly identifying large regions of free memory (either lines or

pages). If free memory does get fragmented, the allocator will first attempt to fill

in those lines on every allocation; page allocation is only invoked when there are no

lines left that are big enough to satisfy allocations.

Even without line allocation, CMR will have a hard bound on memory usage: at

worst, each page will have only one live object, and allocation of large objects will

at worst suffer the same bounds as are experienced by a first-fit allocator [8]. Line

allocation alleviates some fragmentation by ensuring that partially-full pages can still

be used to satisfy allocation requests. But this does not make CMR fragmentation

tolerant. Worse, if fragmentation occurs, the CMR allocation algorithm will degrade

to O(|H|). The problem of fragmentation is addressed in subsequent chapters.

Even with the risk of fragmentation, CMR exhibits competitive performance and

predictability. The remainder of this chapter shows the implementation of CMR in a

high-performance Java virtual machine along with a detailed look at its performance

characteristics.

2.3 Implementing CMR in the Fiji VM Java Virtual Machine

To evaluate the performance and predictability of CMR, it has been implemented

in the Fiji VM real time Java virtual machine. Java is a particularly attractive use-

case for real-time garbage collection technology. At present, real-time programmers

tend to rely on languages such as C or Ada, and use static allocation of data and object

pooling. But as the size of real-time code bases keeps increasing – million line systems

are not unusual – factors such as productivity, reusability, and availability of trained

personnel have spurred interest in Java as an alternative to low-level languages and
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motivated the development of real-time extensions [26] and garbage collectors that

attempt to reduce worst-case execution times [11, 27, 28]. This section describes the

implementation of CMR in Fiji VM and evaluates its effect on the performance and

predictability of Java applications.

2.3.1 The Fiji VM CMR Garbage Collector

CMR is the default garbage collector in Fiji VM. The implementation is almost

exactly as discussed in prior sections in this chapter, except where changes were made

to support the Java type system. Java supports two types of objects: plain objects

and arrays. Plain objects have a size determined by their type, while arrays are

variable length but may hold different types of elements. Plain objects contain a fixed

sequence of fields, where each field may have a different type. Types include primitives

such as bytes, booleans, and integers, among others, as well as object references. An

array may contain only one type of element; for example a byte array will contain

a variable number of bytes, while a reference array will contain a variable number

of references. Thus far the notation used to describe garbage collectors has assumed

that each memory location contains an fixed-range integer that is large enough to

store a reference to another memory location. Java requires more flexibility. Some

types, such as bytes, will be a quarter of the size of a memory reference on a 32-bit

system. Other types, such as a 64-bit long integer, will be twice the size of a memory

reference. The Fiji VM CMR implementation addresses this by rounding up object

sizes to the reference size (32 bits on 32-bit systems, 64 bits on 64-bit systems), and

performing on-demand alignment of the bump pointer if it is necessary to satisfy the

alignment requirements of 64-bit fields on 32-bit systems.

The object structure in Fiji VM is different than the one used so far for CMR.

Plain objects in Fiji VM comprise a single reference-size word for a GC header followed

by a single reference-size word for a pointer to the object’s type. This header is

followed by the object payload, which will contain the fields specified by the type.
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The GC header combines the rotating flag field flag(o) with the link field next(o).

This combination is possible because all objects are aligned to the reference size

in memory, while pointers are byte-aligned. This means that each pointer has at

either two (on 32-bit systems) or three (on 64-bit systems) bits that are effectively

unused, and can be overloaded for other purposes. The type, which in an ahead-

of-time compilation setting is immortal and statically generated by the compiler,

contains information about the size of the object as well as a reference map that lists

the locations of the reference fields. It also includes information about the object’s

alignment requirements. CMR completely ignores the layout of non-reference fields

when scanning the references of an object. Arrays in Fiji VM comprise a GC header,

a type pointer, and an array length, followed by the array elements. CMR does not

need to perform any marking work on arrays of primitive elements, while marking of

reference arrays proceeds exactly as in the algorithm discussed so far.

Compiling Java bytecode to C has traditionally been seen as a challenge for accu-

rate garbage collectors such as CMR, as C compilers do not support the generation

of stack maps. However, a number of well-known approaches exist for circumvent-

ing this [29]. Fiji VM uses the Henderson-style linked list approach in which every

pointer local variable is stored in a thread-local data structure accessible to the col-

lector. This is further optimized for the fact that in Fiji VM objects are never moved

by the collector. Since object pointers only need to be stored into this data structure

when (i) they are known to not already be there and (ii) they will be live after the

next sync-point or method call, many of these stored can be statically eliminated.

This allows for object pointers to be register-allocated by the C compiler in most

cases allowing good performance. Though this solves the accurate GC problem, it

does not address the need to scan every thread’s stack at the beginning of a collection

cycle. This can be addressed by leveraging the observation that (i) real-time threads

only yield the CPU at shallow stacks [30], and (ii) a slack-based collector can only

commence stack scanning if it was yielded to by the real-time threads. Thus, if the

collector is scanning stacks it is guaranteed that it will be able to do so rapidly for
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real-time threads (due to shallow stacks) and will never have to wait for those threads

to converge to a safepoint where stack scanning is possible since those threads must

already be at such a point. Stack scanning thus causes real-time threads to not be

able to run during the short (microsecond-level) interval during which their shallow

stacks are scanned.

Fiji CMR includes support for finalization, monitor locking, machine code garbage

collection, immortal objects, stack-allocated memory, scoped memory, flexible collec-

tor scheduling, and large object optimizations. The extensions required to make these

features work are discussed in the remainder of this section.

Finalization

Java allows classes to declare a finalize() method, which is to be called after an

object is found to be no longer live but before it is swept. CMR supports this by

allocating a special destructor object for every Java object that has a non-empty

finalize() method. Destructors are allocated in the heap, but do not have ordinary

GC headers. Each destructor contains two fields: a link to the Java object and a

next pointer. Destructors are placed on a per-thread linked list, which is collected

into a global linked list during garbage collection using ragged safepoints. After

the marking phase completes, the destructor list is traversed; any object on the list

found to be unmarked is marked, and the destructor is moved to a global finalizable

list. This destructor traversal also invokes shadeBlock() for each destructor. After

this traversal completes, marking is repeated to ensure that any objects transitively

reachable from finalizable objects are marked and preserved through this collection

cycle. A separate thread, implemented in Java, dequeues finalizable objects from the

finalizable list and invokes finalize(). Once the object is dequeued and finalized, it will

no longer be reachable and will be reclaimed on the next collection.
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Monitor locking

Java allows each object to have a lock. The lock pointer is installed in the type

field of the object header, and may point to a heap-allocated Monitor structure. The

Monitor structure does not have normal GC headers. The shadeObject(o) function is

modified in Fiji VM to call shadeBlock() on the Monitor structure, if one exists.

Machine code

Fiji VM supports class loading through the use of a just-in-time (JIT) compiler.

The JIT compiler may choose to recompile methods, in which case the old machine

code will be dead. Even though machine code is not allocated in the heap, CMR

includes support for helping the JIT to reclaim machine code. If the JIT identifies

a block of machine code that is no longer necessary, it places it on a collectable

machine code list. CMR will mark machine code as being live if during the root

scan it observes that some method on the stack is running that machine code. Any

collectable machine codes not marked in the root scan are deleted by calling the JIT’s

machine code reclamation function.

Immortal objects

Fiji VM’s ahead-of-time compiler may generate objects that are placed in the

executable image. These objects may have references that ultimately refer to the

heap; likewise, heap objects may refer to these immortal objects. Immortal objects

have a special flag(s) value that indicates that they should never be collected. [31]

CMR performs a scan of all immortal object fields to find heap references prior to

the start of marking.
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Stack-allocated and scoped memory

Fiji VM allows for objects to be allocated on the stack and in special scoped

memory [26] areas. CMR uses a special value of flag(s) to indicate to the collector

that objects are scoped, and in which scope or stack area they have been allocated. [31]

Scheduling

CMR runs either concurrently to the program (when running on a multiprocessor

machine) or at a predefined priority. In either mode, the collector never offloads work

into application actions. In particular, an allocation will never perform collection

work. When running at a priority that is lower than some application thread, it is

possible for a thread to make a request for memory that outpaces the collector: if the

collector had been allowed to make more progress it may have freed enough memory

to allow the alloction to succeed, but instead, the allocation fails because the collector

is preempted. Whereas a simple implementation of CMR would cause the application

to fail if it ever cannot find free memory, Fiji VM’s implementation will pause the

relevant application thread and have it wait until a complete garbage collection cycle

finishes before the allocation is reattempted. Proving that such a pause does not

happen is an analogous problem to proving the schedulability of a real-time system.

In fact, a fixed-priority collector that can run at priorities lower than the application

(the so called “slack-based” strategy) has well defined schedulability tests as shown

in Kalibera et al’s work on the Minuteman garbage collector [14]. Of course, just

as with any schedulability analysis, one that includes a collector is not an easy task

and is always OS-, hardware-, runtime-, and application-dependent. Details of how

such an analysis might be performance can be found in Kalibera et al’s work on the

schedulability of the Ovm MinuteMan garbage collector [14]. The Fiji VM garbage

collector thread can be controlled directly by the application via a special API for

setting the thread’s priority. This priority can be boosted to the highest in the system

(resulting in stop-the-world behavior) or can be lowered to idle, causing the collector
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to be effectively paused. Together, these features can be used to implement periodic,

or time-based, scheduling. [14,15,32]

Large object optimizations

CMR is designed to be able to allocate large objects inside the heap H. However,

on systems that support virtual memory, it is more efficient to allocate objects larger

than a page in a separate space. This allows the collector to leverage the fact that

the virtual address space is typically an order of magnitude larger than the physical

one. Hence, even if the virtual address space gets fragmented, this is unlikely to

lead to memory allocation failures. CMR performs large object optimizations by

using the system-supplied malloc routine. This can be disabled by the developer at

compile-time, and is disabled by default on systems that do not have virtual memory.

2.3.2 Evaluation of Predictability

The goal of this section is to demonstrate that Java is suitable for use in hard real-

time settings. To this end, this evaluation strives to set a up representative workload

on a realistic evaluation platform and compare the costs of idiomatic Java to C. The

CDx benchmark is used, which models an air traffic Collision Detector algorithm.

The Java version of the code, CDj, was originally implemented by Filip Pizlo, while

the C version, CDc, was created by Gaith Haddad at UCF and modified by Plsek,

Maj, Ziarek, and Pizlo [33].4 The benchmark is array intensive and performs signifi-

cant mathematical computations, making it well suited to low-level C programming

idioms and a good challenge for a Java implementation. Furthermore, the benchmark

has interesting allocation patterns, which do not permit a successful completion of

the benchmark without some form of memory management.5 The platform for this

4Sources are available from http://www.ovmj.net/cdx. The version used for this paper is tagged
as “eurosys”.
5The CDc version of the code is using malloc/free whereas many real-time programmers would
rather use object pooling to prevent fragmentation and have more predictable allocation times.
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experiment is the LEON3 – a SPARC-based architecture that is used both by the

NASA and the European Space Agency [34] – and the RTEMS real-time operating

system.

Fiji VM is also compared to other commercial virtual machines to elucidate the

importance of its design choices on predictability and to verify how performance stacks

up to that of other real-time virtual machine and to mature throughput oriented

VMs. As most Java implementations do not run on the LEON3 platform, this part

of the evaluation is done in a desktop setting where it is possible to evaluate IBM’s

WebSphere SRT and Sun’s Hotspot Client and Server. As WebSphere is optimized

for multicores, the Fiji VM’s multicore functionality is enabled as well.

The LEON3 real-time experiments were run on a GR-XC3S-1500 LEON devel-

opment board.6 The board’s Xilinx Spartan3-1500 field programmable gate array

was flashed with a LEON3 configuration running at 40Mhz. The development board

has an 8MB flash PROM and 64MB of PC133 SDRAM split into two 32MB banks.

The version of RTEMS is 4.9.3. The Rapita Systems RTBx Data Logger7 is used for

on-device profiling. The desktop system used for comparison to other Java implemen-

tations is an 8-core Intel Xeon X5460 3.16GHz machine with 8GB of RAM, running

Ubuntu 7.10 with the 2.6.22-14-server 64-bit SMP kernel. The version of Hotspot

used is jdk1.6.0 12 and WebSphere reports “IBM J9 VM (build 2.5, J2RE 1.6.0 IBM

J9 2.5 Linux x86-32 jvmxi3260srt-20081016 24573 (JIT enabled, AOT enabled)”.

CDx Overview

The CDx benchmark suite is open source family of benchmarks with identical algo-

rithmic behavior that target different hard and soft real-time platforms. A complete

description is given in [33]; this section merely summarizes the key concepts.

The benchmark is structured around a periodic real-time thread that detects po-

tential aircraft collisions based on simulated radar frames. The benchmark can thus

6Further specifications can be found at http://www.gaisler.com.
7For more information see http://www.rapitasystems.com.
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be used to measure the time between releases of the periodic task as well as the time

it takes to compute the collisions. The need for detection of potential collisions prior

to their occurrence makes CDx a real-time benchmark. Each frame must be processed

in a timely fashion.

The algorithm detects a collision whenever the distance between any two aircraft

is smaller than a pre-defined proximity radius. The distance is measured from a

single point representing an aircraft location. As locations are only known at times

when the radar frames are generated, they have to be approximated for the times

in between. The approximated trajectory is the shortest path between the known

locations. A constant speed is assumed between two consecutive radar frames. For

this assumption to be realistic, the frequency of the radar frames should be high and

the detection has to be fast. This is achieved by splitting detection into two steps.

First, the set of all aircraft is reduced into multiple smaller sets. This step allows to

quickly rule out aircrafts that are far from each other. Second, for each cluster, every

two aircraft are checked for collisions. Both the reduction and the checking operate

on pairs of 3-d vectors describing the initial position, ~i, and the final position, ~f , of

an aircraft (~i is from the previous frame, ~f is from the current frame). A frame also

contains a call sign which identifies the aircraft. A motion vector ~m is then defined

as ~m = ~f −~i.

The code size of the Java version, CDj, is 3859 lines of code while the C version

is 3371. CDc is somewhat simpler since it does not have hooks for the multiple

configurations supported by the Java version. CDc is written in an idiomatic C

style that tries to follow the algorithmic behavior of the Java code with some small

differences. For instance, the hash table used by the C code does not require as much

allocation and have constant time traversal.
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Figure 2.16: Histograms of iteration execution times for CDc and CDj on RTEM-

S/LEON3. Java’s worst observed case is 10% slower than C, and the median is 30%

slower.
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Figure 2.17: A detailed runtime comparison of CDc and CDj for 200 iterations. Java

and C execution times are closely correlated. CDj is run with GC enabled. In 10,000

iterations there are 15 collections, but they never impact execution time.

Comparing C to Java

The version of CDx used in these experiments has a single real-time periodic tasks

(CD) configured to run every 300 milliseconds. The benchmark was configured with

6 airplanes and executed the algorithm for 10,000 iterations. The Java version ran

with a GC thread enabled. The GC is set to run at a lower priority than the CD
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Figure 2.18: Execution time correlation between CDc and CDj.

task. As the CD thread takes between 147 and 275 milliseconds (see Fig. 2.16), this

leaves the collector substantially less than 50% of the schedule to perform memory

reclamation. Still, the collector keeps up, and no outliers are ever produced due to

memory exhaustion.

The raw runtime performance of CDc compared to CDj is presented in Fig. 2.16.

For real-time developers the key metric of performance is the worst observed time,

in these benchmarks Java is only 10% slower than C in the worst-case. On average

CDc is 30% faster than CDj. In both executions no deadlines were missed. The

computation took roughly 45 minutes to complete on the LEON3 platform. A more



76

detailed view of the performance of CDc and CDj for a subset of the iterations is

presented in Fig. 2.17. The graph clearly indicates that there is a strong correlation

between the peaks observed in CDc and CDj. Notice, however, that the peaks in

CDj are on average smaller than those in CDc relative to baseline performance (i.e.

the distance from average to peak is greater for C than for Java). Overall this data

suggests that while Java is somewhat slower, there are no sources of unpredictability

in Fiji VM.

Figure 2.18 shows correlations between the execution time of each iteration in

Java to that of the same iteration in C. Iterations that take longer are ones that have

either more suspected collisions, or more actual collisions. A “suspected collision”

is a condition in which the aircraft are sufficiently close that the algorithm must

perform more work in order to determine if an actual collision occurred. An actual

collision requires more work because a collision report must be produced. The former

requires more data structure accesses, more arithmetic, and more allocation, while

the latter requires more allocation. The C code does not have any overhead penalties

for data structure accesses: no null checks, no array bounds checks, and no type

checks. The Java code, on the other hand, makes heavy use of Java container classes.

Container class accesses will introduce at a minimum a nullcheck, and sometimes an

array bounds check or a type check. Thus it is expected that the amount of extra work

during longer iterations will result in greater penalties for Java. Yet this correlation

shows this not to be the case: longer iterations do not penalize Java any more than

they penalize C, indicating that either many of the checks can be eliminated by the

Fiji VM compiler or else that they simply do not cost much.

Java VM Comparison

In this experiment Fiji VM is compared against WebSphere SRT, Hotspot Client,

Hotspot Server using the same benchmark but running on a multicore. CDj was

configured to use up to 60 planes with a 10 milliseconds period and 10,000 iterations.
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Figure 2.19: Histograms of iteration execution times for CDj on Linux/x86. Fiji VM

achieves the best observed worst-case and has the tightest distribution of execution

times – representing the best predictability. WebSphere SRT has a slightly better

average performance but with a larger variance. Hotspot client and server have the

best average-case performance but exhibit poor worst-case performance with outliers

above 300 microseconds. The first 1,000 iterations are excluded from the measure-

ments to avoid initialization bias.

All VMs were given maximum heap sizes of 35MB to execute CDj and were run with

default options. The goal of the experiment is to have a rough idea of the difference

in predictability between WebSphere and Fiji, and in performance between real-time

VMs (WebSphere and Fiji) and production throughput optimized VMs (Hotspot).

The histogram of Fig. 2.19 show the frequency of execution times for each VM

with the first 1,000 iterations of the algorithm dropped to avoid bias due to the just-
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Figure 2.20: Start-up costs. The Y-axis shows the worst-case observed execution time,

while the X-axis shows iterations dropped from the 10,000 performed for each VM.

The initial iterations are dominated by the just-in-time compiler. This is particularly

true for Hotspot server. WebSphere also has a JIT but it is tuned to stabilize faster.

In comparison, the Fiji VM does not suffer from start-up jitter. If roughly 300 or more

iterations are dropped, the JIT-based systems have a worst-case that approaches Fiji

VM’s. At that point the worst-case is dominated by garbage collection where the Fiji

VM performs well due to its fully concurrent and slack-based collection strategy.

in-time compiler. The data demonstrates that average case performance is better for

Hotspot. Specifically, Hotspot Server is 37% faster than Fiji and client is 4.7% faster.

This is to be expected as it does not emphasizes predictability. The worst observed

case is more important for real-time developers. There Hotspot performs between

185% and 200% worse than Fiji, these difference are caused by garbage collection

pauses. As for the comparison with WebSphere, Fiji has an observed worst-case that

is 4% better than WebSphere but run 15% slower on average. Fiji VM has the tightest

distribution (i.e. least deviation from peaks to valleys) of any virtual machine for this

benchmark.

In many real-time applications start-up behavior is important. Fig. 2.20 illustrates

the evolution of the worst observed time as initial iterations of the benchmark are
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Configuration compress jess db javac mpegaudio mtrt jack GEOMEAN

HotSpot 1.6 client 2937± 13.3 782± 21.9 3320± 305 1584± 37 1711± 26.0 397± 6.0 975± 35 1345± 26.1

HotSpot 1.6 server 3096± 146 787± 54 2129± 39 1568± 135 1782± 19.6 406± 43 939± 31 1275± 20.4

CMR STW 3020± 34 978± 18.4 2582± 37 1227± 10.8 2044± 17.8 497± 31 942± 42 1367± 7.8

no quickstore 3016± 19.4 1027± 12.0 2611± 16.3 1265± 21.4 2190± 9.6 511± 33 976± 16.1 1411± 9.4

large objects in H 2977± 14.4 985± 22.3 2572± 15.7 1225± 23.4 2048± 32 498± 35 944± 14.4 1366± 14.3

CMR 3006± 13.3 1275± 70 2600± 10.1 1433± 34 2067± 12.8 495± 31 1130± 72 1492± 25.7

no quickstore 2992± 22.9 1309± 54 2524± 28.6 1461± 6.7 2178± 6.0 486± 7.4 1141± 10.8 1504± 8.7

large objects in H 2960± 11.9 1216± 22.5 2557± 13.9 1401± 13.1 2024± 35 496± 49 1139± 45 1468± 18.7

Table 2.1: Execution times in milliseconds of HotSpot 1.6 and Fiji VM CMR on

SPECjvm98.

removed. More precisely, position 0 on the X-axis shows the worst observed case

for 10,000 iterations of the algorithm. This measure is dominated by the cost of

just-in-time compilation. At offset 100, for example, the graph shows the worst-case

observed between iterations 101 and 10,000. Finally, the far right of the graph shows

the worst-case times when the first 400 iterations are ignored. At that point the

worst-case time is dominated by GC. It is interesting to observe that the costs of JIT

compilation are highest in Hotspot Server and they take longer to stabilize. Hotspot

Client is less aggressive and reaches fixpoint in around 60 iterations of the benchmark.

WebSphere tries to compile code quickly, but the data shows that some compilation

is still happening until around 200 iterations. Unsurprisingly, Fiji has no start up

jitters as it is an ahead-of-time compiler.

2.3.3 Evaluation of Throughput

Table 2.1 shows the performance of the CMR with a variety of configurations.

This is measured on the Fiji VM version of CMR running on an Ubuntu 9.10 Linux

2.6.31 Intel Core i7 Q820 1.73 GHz machine. For each benchmark and configuration,

4 data samples were taken by using two virtual machine executions with 4 benchmark
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iterations and taking the last two samples. The first two samples from each execution

are just used for warm-up. The table shows 95% confidence intervals. SPECjvm98

is used as the benchmark suite. Each benchmark is run using 3× the minimum

heap size for all collectors in Fiji VM. Table 2.1 shows the performance of CMR

running in both a stop-the-world (STW) configuration, where the collector only kicks

in when the heap is exhausted and stops all allocating threads before proceeding, and

a concurrent configuration, where the collector activates after the heap is half full.

Two other variations are shown: CMR with and without the quickstore optimization,

and CMR with and without large object optimizations. HotSpot 1.6 (both client and

server) is shown for comparison. Running CMR in a stop-the-world fashion results

in better performance. This is likely due to decreased memory contention: when

running concurrently, the collector is accessing the same objects as the application,

which may cause more cache misses. The quickstore optimization results in slightly

better performance. Placing large objects in the heap H (i.e. disabling large object

optimizations) does not change performance, but increases the likelihood of page

fragmentation in P preventing successful allocations. According to this benchmark

run on the Core i7 machine, Fiji VM with CMR is almost as fast as HotSpot 1.6

client (the differene is barely outside the margin of error), and about 7% slower than

HotSpot 1.6 server.

2.4 Discussion

The CMR collector combined with the Fiji VM leads to impressive empirical

performance results. However, CMR is susceptible to fragmentation, which may

lead to unpredictable increases in allocation time as well as unpredictable memory

allocation failures. This can be alleviated by either ensuring that partially full pages

are evacuated so that free memory tends to be in the form of entirely-free pages, or

by making it possible to successfully allocate objects in O(n) time regardless of the
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level of fragmentation. The next two chapters discuss each of these two strategies for

making fragmentation tolerant garbage collection.
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3 CONCURRENT COPYING GARBAGE COLLECTION

A garbage collector such as CMR provides the timing guarantees necessary for real-

time systems, but only in situations where fragmentation is minimal or non-existent.

CMR experiences two kinds of fragmentation:

1. Page-internal fragmentation. If a page is neither completely full nor completely

empty, allocations of objects that are smaller than page size may fail even if

the total amount of free space in the page is enough to satisfy the allocation.

This can occur because none of the lines within the page are large enough to

satisfy the request. This may lead to the free space in a page becoming unusable

for all future allocations performed by the application. In the worst case, the

application may end up using new pages for its allocations instead of reusing free

lines, which in turn would lead to space overhead proportional to the occupancy

rate of pages.

2. Page-external fragmentation. Except when large object optimizations are in

use, allocations of objects larger than a page require a first-fit search over the

pages in the heap. Strategies other than first-fit are possible, but first-fit turns

out to be close to ideal for dealing with fragmentation [8]. Regardless of search

strategy, the set of entirely free pages usable for large object allocation may

become fragmented leading to space overhead proportional to log N , where N

is the number of pages used for the largest large object allocation. [7, 8].

The second kind of fragmentation can be completely side-stepped using either

virtual compaction [11, 25] or arraylets [15]. Virtual compaction leverages the fact

that the physical memory space is abstracted using an extra indirection at the hard-

ware level. The application sees a virtual memory space in which each page can be



84

arbitrarily mapped to any page in the physical memory space. The mapping is typi-

cally performed automatically by the underlying operating system, but facilities are

provided that allow the application (or the garbage collector) to control this map-

ping. The virtual memory space is large – 248 on Intel x86 and similarly large on

other hardware platforms. This means that the collector can allow the virtual mem-

ory space to become arbitrarily fragmented, since the ratio of the size of the virtual

space to the physical space is much greater than the log N space wastage incurred by

page-external fragmentation. Arraylets are another approach to battling fragmenta-

tion of large objects. In this scheme, large objects are split into a spine that holds

references to fragments of the object payload. The fragments need not be contiguous.

The solution used by the Metronome garbage collector is to allocate objects that are

larger than a page as discontiguous page-sided fragments indexed by a single spine,

which may be any size. The spine may still be larger than a page, but this reduces

the worst-case wasted space to log N/pagesize.

The first kind of fragmentation is more problemmatic. It is not possible to per-

form hardware virtual mapping of memory at a granularity smaller than a page.

Thus, a fragmented virtual page will lead to a fragmented physical page, leading to

physical space being wasted. Novark et al [25] observed that this can be sometimes

side-stepped by finding two pages that have non-overlapping object occupancy: for

example if one page has objects in its bottom half and another has objects in its upper

half but both are otherwise empty, then the collector could map both virtual pages

to the same physical page. Unfortunately, this stop-gap solution does not generalize

to all possible forms of page-internal fragmentation and is not sufficient for ensuring

that the collector will not waste space.

This chapter explores object copying, which is already known to be useful for min-

imizing page-internal fragmentation. It is already used in stop-the-world collectors

such as SemiSpace, as well as the Baker-style strategy used in Azul’s Pauseless

algorithm [11]. The algorithms presented in this chapter attempt to make object

copying concurrent and wait-free while still ensuring good end-to-end performance.
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Three algorithms are introduced. Chicken is concurrent, wait-free, and fast, but

cannot fully guarantee that an object will successfully be copied. Clover is concur-

rent, wait-free under some circumstances (and lock-free in general), and somewhat

slower, but always guarantees that objects are copied. Clover is the world’s first

probabilistic garbage collector. Progress is a probabilistic garbage collector like

Clover, but provides wait-freedom, at the expense of some caveats that may make

it impractical for mainstream languages.

3.1 The problem of concurrent object copying

Algorithms for concurrent object copying have been proposed before, but they all

either require application threads to block on each other, or to perform O(|M(o)|)

work on a heap access. Baker’s algorithm [10] requires an application thread to

complete the copying of an object in the worst case, or to block and wait until

another thread completes copying on that object. In either case this results in the

Load operation taking O(|M(o)|) work. Herlihy and Moss [12] proposed a variant that

does not require application threads to block, but they will still have to do O(|M(o)|)

work in the worst case. Cheng and Blelloch proposed an algorithm [21] where the

work during heap accesses is O(1), but a Store may have to block on other stores

performed in other application threads to finish.

Ideally a concurrent object copying algorithm will allow every heap access to

complete in some bounded amount of time T , where T is not a function of object

size, heap size, or the number of threads, and is small enough that even if every heap

access triggered the worst case then it would still be possible for the application to

meet its real-time timeliness requirements. The ChengBlelloch algorithm comes

closest to this requirement but runs into the problem that a heap access performed

while an object is in motion must consider not just one memory location but two: the

location of the field in the original object as well as the field in the new object copy.

The underlying hardware provides primitives (wr, rd, CAS) for performing atomic
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wait-free operations over exactly one memory location; if multiple memory locations

are involved then it appears as if using an atomic section is the only option. But

atomic sections involve waiting for other threads. The act of waiting for another

thread to finish its heap access carries multiple risks. First, it means that heap access

time is in the worst case proportional to the number of threads. Second, it means that

if a thread has its execution postponed while it is in an atomic section, for example

due to operating system scheduling decisions, then no other thread will be able to

proceed with its heap accesses. Thus, it is better to have a heap access algorithm

that does not use atomic sections and instead can make progress regardless of the

state of other threads.

The algorithms presented in this chapter aim to solve the problem at two different

levels of granularity. Chicken attempts to make the copying of each object appear

atomic, much like Baker does. However, instead of using atomic sections, it uses CAS

to make the “flip” – the point where the application begins using the new object copy

– appear atomic. Clover and Progress operate over field granularity. They uses

CAS over each field to perform copying. The novelty of Clover and Progress is

in their ability to use a single-location CAS to perform copying between two separate

locations.

3.2 Concurrent Copying Model

This chapter presents concurrent copying algorithms as a plug-in for CMR-like

garbage collectors. The requirements of the host collector are that it provides an extra

memory location in the header of each object, uses a concurrent marking style similar

to DLG, and gives the copier a mechanism for iterating over objects to fix references

from the originals to the copies. The copier requires one additional field in each

object for referring to the object copy and for storing the copying state of the object.

This field can be accessed using setFwd(o, v), getFwd(o), and casFwd(o, c→v). The

collector is responsible for ensuring that all newly allocated objects have getFwd(o) = o.
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setFwd(o,v) =

wr(o+3,v)

getFwd(o) =

rd(o+3)

casFwd(o, c→v) =

CAS(o+3, c→v)

Figure 3.1: CMR’s support for concurrent copying forwarding pointers.

The collector provides a mechanism for locating element i in object o, location(o,i),

such that rd(location(o,i)) is requivalent to the base collector’s Load(o,i), a mechanism

for marking objects mark(o), and a mechanism for fixing all references in the heap

fixObjectReferences() such that each reference l is repaced with getFwd(l).

In turn, the copier provides implementations of Store, Load, and the copy(tagged)

function for copying a set tagged of objects tagged by the collector for copying. The

copying algorithms presented in this chapter are all capable of running in parallel to

the collector, because even as they perform copying, they preserve the integrity of the

collector’s marking loop by calling mark as necessary. Thus, the collector is free to call

this routine in parallel to the collector thread, or from within the collector thread itself

– whichever is deemed more appropriate by the collector designer. For simplicity, the

CMR-quickstore optimization is assumed to be turned off for the purpose of showing

the Store transformations in this chapter.
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fixObjectReference(l, W ) =

loop

dold ← rd(l)

dnew ← fwd(dold)

mark(dnew, W )

if dold = dnew

break

if CAS(l, dold→dnew) = dold

break

Figure 3.2: Helper function to fix a reference in the heap.

3.2.1 Implementation of Concurrent Copying Model in CMR

CMR can be modified to provide the facilities necessary for concurrent copying.

The object structure is modified to use a 4-location, rather than 3-location header,

with the fourth part of the object being the copier’s forwarding pointer fwd(o). The

remaining parts of the object are as in CMR, and the heap structure is not otherwise

changed.

headsize = 4 fwd(o) = rd(o+3)

Figure 3.1 shows CMR’s implementation of forwarding pointers, and Figure 3.3

shows CMR’s implementation of heap fix-up. The fixObjectReferences() helper function

is similar to the body of CMR’s marking loop, except that it first performs forwarding

using fwd(o) before marking any object. It also replaces the original contents of a

heap edge (either a root or a reference in an object) with the forwarded version.

This is implemented in the fixObjectReference() function shown in Figure 3.2. A CAS
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fixObjectReferences() =

ragged safepoint t in T nop

fM ← !fM

ragged safepoint t in T nop

phase ← 2

ragged safepoint t in T nop

phase ← 3 ; fA ← fM

ragged safepoint t in T nop

ragged safepoint t in T

foreach r in roots(t)

fixObjectReference(r, W [t])

atomic transfer(W [t]→W )

while W .head 6= 0

while W .head 6= 0

s ← dequeue(W )

shadeObject(s)

foreach i in [0, len(s)−1]

fixObjectReference(location(s,i), W )

ragged safepoint t in T

atomic transfer(W [t]→W )

ragged safepoint t in T

foreach r in roots(t) wr(r,fwd(rd(r)))

phase ← 4

sweepPagesAndLines()

sweepLargeObjects()

phase ← 1

postSweep()

Figure 3.3: CMR’s support for heap fix-up.
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Store(o,i,v) →

mark(v)

if getFwd(o) = 1

casFwd(o, 1→o)

copy ← getFwd(o)

w ← rd(location(copy,i))

mark(w)

if chickenPhase = 2

v ← getFwd(v)

wr(location(copy,i), v)

v ← Load(o,i) →

copy ← getFwd(o)

if copy = 1

copy ← o

v ← rd(location(copy,i))

Figure 3.4: Transformations used by Chicken.

loop is used to ensure that concurrent stores into the object do not get overwritten.1

Following the completion of marking, fixObjectReferences() performs a second root scan

to just fix references, in case the application had loaded an unforwarded reference

during marking.

3.3 Chicken

Chicken allows both the collector and the program threads to exploit an op-

timistic assumption about program behavior to gain raw speed as well as real-time

guarantees that are unprecedented for a concurrent copying collector. The optimistic

assumption is that the program threads are unlikely to modify objects marked for

copying during the brief window during which those objects are copied; if the assump-

1For fixing references from roots, this CAS loop is not needed; as an optimization, root scanning
could instead use a simple wr.
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copy(tagged) =

foreach o in tagged

setFwd(o, 1)

ragged safepoint t in T

nop

foreach o in tagged

copy ← Alloc(len(o), 0)

for i in [0, len(o)−1]

wr(location(copy,i), rd(location(o,i)))

casFwd(o, 1→copy)

chickenPhase ← 2

fixObjectReferences()

chickenPhase ← 1

Figure 3.5: The Chicken copying algorithm.

tion does not hold, copying is aborted for the affected objects. This assumption leads

to an algorithm in which reading and writing are cheap wait free operations, while

the algorithm responsible for performing the copy is allowed to be mostly impervious

to concurrent program activity.

3.3.1 Main Design Points

The main design points of the algorithm follow.

Objects are copied as a whole. Like Baker, Chicken completely copies an

object to its new location and then lets all program threads switch to working on the

new location. Thus, either the from-space object contains the most up-to-date state,
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or the to-space does. This property is useful for read performance, as it allows field

reads to be implemented using a simple wait-free Brooks-style Load, rather than

the heavier heap accesses of Baker or Clover.

Writing is a wait-free operation. When a program thread is about to write to an

object, it asserts that either the object is fully copied (in which case it can write to to-

space) or it is not tagged for copying at all (in which case it can write to from-space).

If the object is in neither state, then the optimistic assumption did not hold. In this

special case, copying is aborted for that object. Aborting is implemented using a CAS,

which can only fail if some other thread already aborted the copying process for this

object, or if the copier completed copying. Thus, Store always completes in a constant

number of steps, making it wait-free. A ragged safepoint occurs before copying starts.

Each object that the collector means to copy is tagged before the ragged safepoint is

initiated. The collector does not proceed with copying until all threads acknowledge

the initiation of a compaction phase. This has an important implication. After

successfully aborting object copying, a program thread may assume that the object

will not be copied until the next compaction runs; furthermore, a new compaction

will not start until the program thread acknowledges a ragged safepoint. Thus, writes

to the from-space location of an object, whose copying process was aborted, are safe.

The copying process is wait-free. Objects are flipped from from-space to to-

space individually. When the copier has copied all fields of an object to to-space,

it asserts that the object is still tagged; if so, the object is “flipped” by installing

a forwarding pointer in from-space that refers to to-space. This assert-and-flip is

implemented using a CAS on the same word that holds the tag. The assertion fails

(that is, the object is no longer tagged) only if the copying is aborted by some program

thread. In this case, the to-space copy is discarded. Thus – if a program thread writes

to an object before the copier flips it, it clears the tag and the object is not copied;

otherwise the object is copied and the program threads write to and read from to-

space thereafter.
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To summarize, Chicken requires only a Brooks-style wait-free Load and a wait-

free “aborting” Store that in the fast path only requires a read operation and a branch

followed by the original write operation.

3.3.2 Algorithm Details

For the application, Chicken is designed to allow high-speed heap accesses even

during concurrent copying activity. Meanwhile, Chicken copies the contents of the

object into to-space. Figure 3.4 shows the store and load transformations. Note that

the Load implementation is almost as in Brooks; the only difference is the special-

casing of getFwd(o) = 1. It is possible to replace the if statement with arithmetic on

systems where valid memory pointers are multiples of the pointer size, in which case

the special 1 case can be represented as a self-pointer with a low-order bit set. The

Store transformation ensures that the application only writes to the object if the

object is either not tagged for copying, or it is already fully copied. This brings up

a possible race between the collector thread that attempts to copy the object, and

the program thread that wants to mark the original version of the object unmoveable

before modifying it. This race is settled by a CAS operation on the forwarding word

in the object header. The copier prepares a copy of the object concurrently, in the

hope that no thread will modify it during the creation of the replica. When the new

copy is ready, the copier performs a CAS to atomically change the tag value (1) into

a forwarding pointer. Atomicity is crucial, because at the same time, the program

thread may attempt to perform a CAS on the same word if it is about to modify a

field in the object. The Store implementation in Fig. 3.4 specifies the action to be

taken with each write during the moving phase. If the value of the forwarding word

is not 1, then the object is either already copied or is not meant to be copied at all.

In that case, no race is expected and the forwarding pointer can be used to access

the relevant object and field. Otherwise, the object is about to be moved and the

program thread needs to mark it unmoveable by clearing the tag (casFwd(o, 1→o))



94

and replacing it with a self-pointer. Note that this modification of the header word

must be executed with a CAS. Indeed, a simple store will mark the correct tag and

pointer, but it may occur after the copier has executed its CAS, and other threads

may be already using the new copy. The CAS ensures that the header word will never

contain the tag value (1) once the object modification takes place. After executing

the CAS, the program thread does not care if the CAS execution was successful, or

the copier has modified the header word earlier to point to the new object, or another

program thread has marked the object unmoveable. In all these cases, the pointer in

the header properly references the object copy that should be accessed and that will

not be moved during the current collection cycle.

It is interesting to note that the branch that guards the CAS is strictly a through-

put optimization – the CAS already performs the same check as the branch; as such it

may be worthwhile for implementors interested more in predictability than through-

put to omit the branch. Even on the slow path, both reading and writing are wait-free

operations.

Copying under Chicken is shown in Fig 3.5. The first step of copying is to tag

the objects that are to be copied, by setting the forwarding header to the special

value 1. Next a ragged safepoint is initiated and the copier waits for all threads to

acknowledge – this ensures that no Store s that observed the object as being untagged

before copy() began end up performing the write while the objects contents are being

copied. Once all threads acknowledge the safepoint, the copy is allocated and the

contents are copied using normal rd and wr operations. The object may be copied

in any order using any optimized facility for copying sequential bytes; for example,

on systems that provide optimized memcpy, such optimizations can be used to make

Chicken faster. Once this completes the object is flipped by asserting that it is still

tagged, and if so, forwarding it to the copy. After this is performed for all objects

tagged for copying, the copier asks the collector fix object references, so that all

references that previously pointed at the original tagged objects now point at the

object copy. This requires notifying the Store implementation to only store object
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references after forwarding, and is accomplished by setting chickenPhase to 2. Doing

so ensures fix-up termination – if a store overwrites a field value after that field has

been fixed, the fix-up routine does not have to revisit it since the store will install an

already-forwarded value.

3.3.3 Discussion

Chicken is designed for speed. Loading and storing do not require synchroniza-

tion operations like compare-and-swap, except in the Store slow path. Both loads and

stores are wait-free in the worst case. The copier itself is light-weight, fast, and highly

parallelizable: the copying task(s) can safely ignore concurrent mutator activity right

up until the point where the copy operation is committed by flipping the object. The

flip is a wait-free operation. However, this high performance comes at a cost: there is

no guarantee that a particular object selected for relocation will actually be relocated.

Indeed, it is possible for some “hot” objects to not be relocated in any copying cycle.

It is possible to reduce the number of aborted copies by copying fewer objects at

a time. The application can only cause an abort if it performs a Store to a tagged

object between the time when the tag is installed, and when copying finishes for an

object and the tag is replaced with a forwarding pointer to the new object copy.

This interval of time grows linearly with the number of tagged objects passed to

copy(tagged). Hence, a client collector can increase the likelihood that objects will

be copied by calling copy(tagged) multiple times for multiple subsets of objects. A

downside of this approach is that fix-up is roughly O(|H|). Thus a better approach

would be to modify copy(tagged) to perform the copy-and-tag portion of Chicken on

small subsets of tagged, and then perform one heap fix-up after all of the subsets of

tagged have been copied.
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3.4 Clover

This section introduces the Clover collector. This collector builds on the fact

that random arbitrary events seldom happen and furthermore, it is possible to ana-

lyze the probability of things going wrong. In Clover, if things go wrong, at worst a

program thread will block – but the program will still behave correctly. Clover fails

to support lock-freedom with negligible probability. It is important to stress that this

negligible probability depends on random coin tosses made by the collector during

the execution and not on the input or any other property of the execution. Namely,

there is no “bad input” or “bad execution” that cannot be handled. The advantage

of Clover over Chicken is that it always relocates objects marked for relocation;

relocation is never aborted. The advantage of Clover over all other copying collec-

tors is that it has a better worst-case execution of Store and Load: both operations

always lock-free. Lock-free algorithms are O(1) when executed in serial. However, a

lock-free algorithm may have to be reattempted in the event that multiple threads

are simultaneously operating over the same memory. More precisely, lock-freedom

implies two properties that are useful for real-time systems:

1. If an application thread is executing a lock-free algorithm over memory that is

not concurrently being accessed by any other thread, the algorithm will complete

in O(1). This is true even if the thread in question has preempted another thread

that was operating over the same memory locations. All that is needed for the

O(1) guarantee to hold is that no other thread interferes with the memory

accesses being performed in the algorithm, by writing to those locations whilst

the lock-free algorithm is running. Any writes to those locations may cause

the lock-free algorithm to reloop and retry. This guarantee is stronger than the

one provided by an atomic section. If a thread t1 begins executing an atomic

section but does not finish it, and then t2 preempts t1 and wishes to enter an

atomic section, then t2 will have to wait for t1 to finish – typically by having

the operating system switch execution back to t1 either on the current processor
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storeTo(o,i,v) =

w ← rd(location(o,i))

mark(w)

wr(location(o,i), v)

Figure 3.6: The storeTo(o,i,v) helper function for Clover, which performs a CMR-

style store to a heap location.

or on a different one. By contrast, if t1 begins executing a lock-free algorithm

but gets preempted by t2 before it completes, t2 will be able to immediately

complete its lock-free algorithm without any further help from the operating

system.

2. Even if multiple application threads are modifying the memory being operated

on by the lock-free algorithm, it is guaranteed that there exists some constant C

that depends only on the number of threads and the structure of the lock-free

algorithm, such that after a time interval of duration C passes there will be

some thread in the system that will make progress and complete its lock-free

algorithm. This is true regardless of the number of processors or the scheduling

strategy being used by the operating system.

Lock-freedom is a weaker property than wait-freedom. Every wait-free algorithm

is lock-free, but not vice-versa. Wait-freedom, which is provided by Chicken’s Store

and Load algorithms, ensures that even when multiple threads are modifying the

same memory, each thread will complete in O(1) time. This is the essential trade-off

between Clover and Chicken: Clover is lock-free but guarantees object copying,

while Chicken is wait-free but may sometimes abort the copying of objects.
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Store(o,i,v) →

mark(v)

if getFwd(o) = o

if cloverPhase = 3

v ← getFwd(v)

storeTo(o,i,v)

else

if cloverPhase = 1

storeTo(o,i,v)

elsif cloverPhase = 2

loop

w ← rd(location(o,i))

if w = R

storeTo(getFwd(o),i,v)

break

else

mark(w)

if CAS(location(o,i), w→v)

break

elsif cloverPhase = 3

storeTo(getFwd(o),i,getFwd(v))

v ← Load(o,i) →

v ← rd(location(o,i))

if v = R

v ← rd(location(getFwd(o),i))

Figure 3.7: Transformations used by Clover-simple.
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copy(tagged) =

foreach o in tagged

setFwd(o, Alloc(len(o), R))

cloverPhase ← 2

ragged safepoint t in T

nop

foreach o in tagged

copy ← getFwd(o)

for i in [0, len(o)−1]

loop

v ← rd(location(o,i))

if v = R

break

wr(location(copy,i), v)

if CAS(location(o,i), v→R) = v

break

cloverPhase ← 3

fixObjectReferences()

cloverPhase ← 1

Figure 3.8: The Clover-simple copying algorithm.
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3.4.1 A simple version of Clover

Assume that there exists some value R that will never be used by the application.

This is easy to ensure in the model presented so far where the only values in the

heap are references to objects. All that is needed is to constrain the range of the

memory locations used for the heap H such that there exists some value R 6∈ H. R

can then be used as a per-object-field tag to indicate that the given field has already

been copied. This is analogous to the per-object tag value 1 used in Chicken, except

that in Clover, a per-field granularity is employed. Furthermore, to the extent that

the application may “abort” the copying of a field, Clover’s copier can immediately

reattempt it, which ensures that ultimately all objects tagged for copying will be

copied.

While copying is ongoing, Clover allows the Store and Load implementations to

see both the original versions of objects and the object copies. As in ChengBlel-

loch, the application only holds references to the original (from-space) objects. Each

field may be in one of two states: either original or copied.

Original : If the field is in the original state, the most up-to-date value of the field

is in the original version of the object. The object copy does not yet contain

the correct value of the field because the copier has not yet copied it. Fields in

the original state have any value except R in the from-space original version of

the object. Most of the time, fields in the original state will also have the value

R in the to-space copy, but this property is not strictly guaranteed.

Copied : A field in the copied state has the value R in the original from-space object,

and the correct value of the field is in the to-space object copy. The application

can tell that the field is copied by observing the tag value R in from-space.

Typically, fields in the copied state will have some value other than R in to-

space, but this property is not strictly guaranteed.

Another way of viewing the relationship between R and the state of a field is:
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• R in from-space: The field is definitely in the copied state.

• R in to-space: The field is probably in the original state.

• Some value other than R in from-space: The field is definitely in the original

state.

• Some value other than R in to-space: The field is probably in the copied state.

Figure 3.7 shows the transformations used by Clover. Figure 3.6 shows the helper

function storeTo(o,i,v), which stores a value v into location(o,i) while performing part

of the CMR marking protocol. The Load transformation simply checks if the field’s

value in the from-space original object is R; if it is, then it reloads loads the value

form the to-space copy. The Store transformation is more involved because it must

coordinate with the copier. If a field is overwritten in from-space as it is being copied,

then the update may get lost. As in Chicken, heap fix-up requires that stores

only install forwarded (to-space) values. Objects that are not undergoing copying

(getFwd(o) = o) are treated differently than objects that are being copied. And finally,

the store protocol is different when the copier is still preparing for copying or when

no copying activity is on-going (cloverPhase = 1).

The Store protocol is best understood by first examining the copy(tagged) routine

in Figure 3.8. The copier has three phases:

1. Idle: Either there is no copying activity on-going, or the copier is still preparing.

In this phase, the Store transformation should behave as if to-space object copies

do not exist.

2. Copy: Objects tagged for copying are actively being copied. The Store trans-

formation must coordinate with the copier to ensure that no stores to the heap

get lost. Application thread roots still refer to the original from-space objects,

but may access the to-space objects via the forwarding pointer when necessary.
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3. Fixup: All copying has completed. Application threads may refer to either

from-space or to-space, but will only access to-space, and will only store to-

space values into the heap.

The Idle phase (1) is used by the Clover copying algorithm to prepare for copying

by allocating object copies and installing forwarding pointers. At this time, the

Store transformation will ignore the forwarding pointers entirely by observing that

the phase is 1. The Load transformation will ignore forwarding pointers because the

original objects will not contain the value R, since that value will only get installed

once copying starts. Object copies start out being populated with the value R. This is

not strictly necessary but makes the algorithm more robust as discussed in Sec. 3.4.2.

Because the application ignores forwarding pointers during the Idle phase, the copier

generates no interference during this phase.

After all objects tagged for copying are prepared, the phase is switched to Copy

(2). The Copy phase protocol for Store depends on whether or not the object is

tagged for copying. If it is not, then the protocol is no different than in the Idle

phase. Otherwise, Clover requires a CAS loop that only writes to the original from-

space object if the value of the from-space field was not R. If it is observed to be R,

the Store completes by storing to to-space.

The phase change from Idle to Copy is performed using a ragged safepoint, which

means that there will be a period of time during which some threads are in the Idle

phase while others are in the Copy phase. While the ragged safepoint is on-going, no

object copying will have occurred yet. Thus, the Store and Load transformations will

thus behave “as if” the copier was still in the Idle phase. This ensures that the Store

protocol is correct even if some threads are executing it as if in phase 1, while others

are executing it as if in phase 2. After the ragged safepoint completes, the copier

copies the value of each field by repeatedly loading its from-space value, storing it

into to-space, and then asserting that the from-space value had not changed in the

mean-time while atomically installing the tag value R. This protocol may be repeated

as many times as necessary, if application threads are simultaneously changing the
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casTo(o,i,c→v) =

loop

w ← rd(location(o,i))

mark(w)

if w = c or getFwd(w) = getFwd(c) and

CAS(location(o,i), w→v) = w

return w

elsif CAS(location(o,i), w→w) = w

return w

Figure 3.9: The casTo(o,i,v) helper function for Clover, which performs a CMR-style

CAS to a heap location.

field value by using Store. Copying of a field is known to be complete when the copier

successfully flips the from-space value from v (the value stored to to-space) to R.

At this time, both Store and Load will begin to access to-space whenever operating

on that field. Note that the copy algorithm will skip over fields whose from-space

value was already R. This should never happen, but is a key feature of making the

algorithm more robust as discussed in Sec. 3.4.2.

Once all fields in all tagged objects have been copied, Clover begins fix-up. This

starts by setting the phase to 3, which informs the Store transformation to only store

to-space values into the heap. This ensures fix-up termination.

3.4.2 Clover as a probabilistic algorithm

The correctness of Clover depends on there being a value R that will never be

used by the application. In the simple model of garbage collection used so far, this
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r ← ObjCAS(o,i,c→v) →

mark(v)

if getFwd(o) = o

if cloverPhase = 3

v ← getFwd(v)

return casTo(o,i,c→v)

else

if cloverPhase = 1

return casTo(o,i,c→v)

elsif cloverPhase = 2

loop

w ← rd(location(o,i))

if w = R

return casTo(getFwd(o),i,c→v)

elsif w = c

mark(w)

if CAS(location(o,i), w→v)

return w

elsif CAS(location(o,i), w→w)

return w

elsif cloverPhase = 3

return casTo(getFwd(o),i,c→getFwd(v))

Figure 3.10: ObjCAS used by Clover-simple.
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is trivial to accomplish because the only heap values are references into the heap,

and the heap consists of a bounded set of memory locations. But general garbage

collectors must often tolerate – and be able to copy – fields that contain arbitrary

bits. Integer fields are one example. If given a 32-bit integer field, Clover would

not be able to pick a value R and be absolutely certain that this value will not be

used by the application.

But even the simple version of Clover is capable of coping with fields for which

no correct selection of R exists. Clover defends itself against such fields using three

techniques:

Random selection: The value R is picked at random from a uniform distribution,

independently of the program. Thus the probability of the application using R

decreases exponentially with the number of bits in a memory location. On a

32-bit system, the probability of failure for any Store or Load would be 2−32.

Field coalescing: A 32-bit integer field does not have to be copied independently of

other fields. The copying algorithm in Clover can copy a large number of bits

at once. The largest number of bits copied at a time is bounded by the widest

CAS available on the underlying hardware architecture. Architectures such as

the widely-deployed Intel64 provide a 128-bit wide CAS. This allows for a tiny

failure probability of 2−128.

Defensive design: Even if the application uses R, Clover may still succeed and

give correct behavior. This is due to object copies being prepopulated with R,

and the copier ignoring those fields that already had R in from-space.

Field coalescing means that the Store transformation from Fig. 3.7 cannot be used.

For example, one application thread may want to store a 32-bit value into the first

one fourth of a 128-bit Clover field, while another thread may want to store a 32-bit

value into the second one fourth of the same 128-bit field. If using 32-bit memory

locations without 128-bit field coalescing, these stores would not interfere at all. But

if field coalescing is used and the only functions provided by Clover are Store and
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Load, then the application would be forced to use an atomic section to ensure that

one of those stores does not inadvertently cause the other to be lost. A better way of

preserving this non-interference is to allow the application to perform CAS on object

fields. Such an ObjCAS is provided by most garbage collectors. Fiji CMR includes

such a facility, as do other Java implementations such as Sun HotSpot. In Chicken,

supporting ObjCAS is trivial because at any time, the application only sees one object.

The ObjCAS implementation is similar to Store; the only change is using CAS instead

of wr to modify the field. But in Clover, ObjCAS is more sophisticated, and is

shown in Figure 3.10. Figure 3.9 shows the casTo(o,i,c→v) helper function, which is

analogous to storeTo(o,i,v) but used CAS instead of wr. This transformation must be

aware of the possibility that the field’s most up-to-date value is either in from-space

or in to-space, and implements a CAS loop in phase 2 that verifies both the location

of the of the field’s value and the value itself before performing any modifications.

ObjCAS will also perform a dummy CAS(l, w→w) in cases where the CAS would have

failed; this is done because the semantics of CAS (and ObjCAS) have other visible

side-effects on some systems. In this way, ObjCAS preserves as much of the behavior

of the low-level CAS as possible.

If a field contains the value R, but that field is not modified at all during copying,

Clover will not fail because the copier prepopulates to-space objects with R. The

Load transformation will begin reading R from to-space as soon as the forwarding

pointer is installed in phase 1, but this will not change application behavior – the

application will see that it has read R, which was the value it would have expected to

read. Failure can only happen if a Store occurs during copying. If the field did not

previously contain R and the Store does not store R, then nothing wrong happens;

Clover will behave as expected. Problems can only arise if the application overwrites

an R value, or if a field that was not previously R is overwritten with R. Additional

problems may arise due to the need to support field coalescing and user support for

CAS. Even in these cases, the Clover will only fail if such stores occur during

specific phases of execution.
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Replacing a value with R

A race condition with the copier is possible if the application stores R into a field

that was not previously R. Normally, this will not cause issues: the to-space version of

the field will be R, so after the store occurs, the application will read R from to-space

as expected. But consider that at the same time, the copier had copied the previous

value of the field, v, to to-space. The copier stores to to-space before flipping from-

space to R and moving on to the next field; it does so assuming that no application

thread will read to-space until R is installed. But if the application installs R whilst

the copier is performing the copy, then the store will be lost: from-space will contain

the R stored by the application, while to-space will contain the old v copied by the

copier. The application will then read the stale v as if the store of R had never

happened. This race is only possible if the Store occurs just as the copier is copying

the field.

Replacing R with a different value

If the application stores some value other than R into a field that previously

contained R, then there is a potential for the store to be lost. But the store can only

be lost during the execution of the ragged safepoint that transitions the application

from phase 1 to phase 2. If the store occurs in phase 1 before the ragged safepoint,

then no problems arise because the Store transformation will place the value in from-

space. Subsequent Load s will observe that the field is not R and return the previously

stored value, leading to the expected outcome. If the store occurs in phase 2 after

the ragged safepoint completes, then again there is no problem. The phase 2 mode of

Store will observe that the old from-space value was R, and perform the store in to-

space. The copier will not overwrite to-space since the from-space value was already

R.

But if the store occurs during the ragged safepoint that transitions the copier

from phase 1 to phase 2, it is possible for thread t1 to store v1 to to-space (because
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it observed that the phase was 2) while another thread t2 stores v2 to from-space

(because it had not yet observed that the phase was 2, and was still using the simpler

phase 1 mode of Store). This turns out to be a problem if Clover is performing

field coalescing. Thread t1 may execute ObjCAS in phase 2, and thus replace some set

of bits in to-space with v1, while thread t2 executes ObjCAS in phase 1, and replace

some set of bits in from-space with v2. This leads to t1’s store being lost entirely – the

from-space will no longer contain R, so all mutators will now read from-space until

the copier copies the field and v1 will never be read.

Analysis of the probability of failure

The probability of the application storing the value R into the heap at any time

is just 2−128. The probability of this event occurring is equal to tossing a biased coin

128 times independently and seeing it land on its face each and every time. Just to

appreciate the scarity of this event, consider running this experiment again and again

every nanosecond since the beginning of the universe (the big bang) until now. We

would still have a tiny probability of about 2−40 to actually observe all coins facing

the same predetermined side 128 times in one of these experiments. For systems

supporting a CAS of 64 bits only, we would get a probability of 2−64, which is still

amazingly small, and significantly smaller than any known estimate on the probability

of encountering a hardware failure.

One important fact from probability theory should be high-lighted. If the coins are

tossed uniformly and independently at random, then an execution will write R with

probability exactly 2−128 at each memory write, no matter how the program behaves.

This is correct even for malicious programs, as long as they are given no information

about R, i.e., R is tossed independently of the program execution. Informally, if the

execution is independent of the choice of R, then there is no way any memory write

can hit R with probability that exceeds 2−128.
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But because of Clover’s defensive design, the probability of failure is actually

strictly less than 2−128. Clover will only fail if R is stored while the copier is copying

the field, or if R is overwritten while the copier is executing a ragged safepoint from

phase 1 to phase 2. The likelihood L of a store happening during these phases of

copying is program-dependent, since it depends on the amount of time spent copying.

But L < 1 is sure to hold, since copying is followed by a heap fix-up, which will

typically consider the entire heap H as opposed to just the set of tagged objects.

Thus the actual probability of a store causing a failure is thus 2−128L < 2−128.

Even though this probability is negligible, Clover can be modified to ensure that

every execution is correct even if the application uses R. The next section considers

Clover-correct, a modification that detects when R is used and blocks the offending

application thread until the harmful interleaving is no longer possible.

3.4.3 A correct version of Clover

Clover may fail with negligible probability. But a more aesthetic solution is

to make it completely correct by detecting when a failure might occur and blocking

the program until the harmful interleaving is no longer possible. This new version

of Clover, called Clover-correct, is described in this section. Because one of the

interleavings that causes failures is due to the ragged safepoint from phase 1 to phase

2, a new phase is introduced, called the Prep phase, the represents the state of the

system after forwarding pointers are installed but prior to the start of copying. The

new phases are:

1. Idle: Either there is no copying activity on-going, or the copier is still installing

forwarding pointers. In this phase, the Store transformation should behave as

if to-space object copies do not exist.

2. Prep: Forwarding pointers have been installed but copying has not yet started.

However, the ragged phase transition from Prep to Copy means that while one

thread thinks that the state of the system is Prep other threads may already be
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Store(o,i,v) →

mark(v)

if getFwd(o) = o

if cloverPhase = 4

v ← getFwd(v)

storeTo(o,i,v)

else

if cloverPhase = 1

storeTo(o,i,v)

elsif cloverPhase ∈ [2,3]

if v = R

wait until cloverPhase = 4

storeTo(getFwd(o),i,getFwd(v))

else

loop

w ← rd(location(o,i))

if w = R

wait until cloverPhase = 3

storeTo(getFwd(o),i,v)

break

else

mark(w)

if CAS(location(o,i), w→v)

break

elsif cloverPhase = 4

storeTo(getFwd(o),i,getFwd(v))

v ← Load(o,i) →

v ← rd(location(o,i))

if v = R

v ← rd(location(getFwd(o),i))

Figure 3.11: Transformations used by Clover-correct.
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r ← ObjCAS(o,i,c→v) →

mark(v)

if getFwd(o) = o

if cloverPhase = 4

v ← getFwd(v)

return casTo(o,i,c→v)

else

if cloverPhase = 1

return casTo(o,i,c→v)

elsif cloverPhase ∈ [2,3]

if v = R

wait until cloverPhase = 4

return casTo(getFwd(o),i,c→getFwd(v))

else

loop

w ← rd(location(o,i))

if w = R

wait until cloverPhase = 3

return casTo(getFwd(o),i,c→v)

elsif w = c

mark(w)

if CAS(location(o,i), w→v)

return w

elsif CAS(location(o,i), w→w)

return w

elsif cloverPhase = 4

return casTo(getFwd(o),i,c→getFwd(v)

Figure 3.12: ObjCAS used by Clover-correct.
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copy(tagged) =

foreach o in tagged

setFwd(o, Alloc(len(o), R))

cloverPhase ← 2

ragged safepoint t in T

nop

cloverPhase ← 3

ragged safepoint t in T

nop

foreach o in tagged

copy ← getFwd(o)

for i in [0, len(o)−1]

loop

v ← rd(location(o,i))

if v = R

break

wr(location(copy,i), v)

if CAS(location(o,i), v→R)

break

cloverPhase ← 4

ragged safepoint t in T

nop

fixObjectReferences()

cloverPhase ← 1

Figure 3.13: The Clover-correct copying algorithm.
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in Copy. Thus, Store behaves almost as if copying is on-going except in cases

where this would interfere with the preceding phase transition – the one from

Idle to Prep.

3. Copy: Objects tagged for copying are actively being copied. The Store trans-

formation must coordinate with the copier to ensure that no stores to the heap

get lost. Application thread roots still refer to the original from-space objects,

but may access the to-space objects via the forwarding pointer when necessary.

4. Fixup: All copying has completed. Application threads may refer to either

from-space or to-space, but will only access to-space, and will only store to-

space values into the heap.

The two new defenses against failures are to detect when R is stored during either

Prep or Copy, and to detect when R is overwritten during Prep. If any of these

cases occur, the Store and ObjCAS implementations will wait until a phase during

which the action would be safe. Writing R is only safe during Idle or Fixup, so the

implementation waits until the Fixup phase. Overwriting R only unsafe during Prep,

so the implementation waits until the Copy phase. The transformations are shown in

Fig. 3.11 and 3.12. The new copying algorithm is shown in Fig. 3.13.

3.4.4 Discussion

Clover ensures that all objects are copied, but uses a Store implementation that

is much more complex than Chicken’s. In the worst case, it is lock-free, which is bet-

ter than the atomic section used by ChengBlelloch, but slower than Chicken’s

or CMR’s wait-free Store. As in Chicken, the Store implementation may invalidate

some copying activity. But unlike Chicken, where invalidation is at object granu-

larity and means that the object will not be copied during this copying phase, the

Clover approach allows for the collector to immediately retry copying of that field.

The only way for the collector to stall is if an application thread monopolizes a pro-
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Store(o,i,v) →

mark(v)

copy ← getFwd(o)

w ← rd(location(copy,i))

mark(w)

if progressPhase = 2

v ← getFwd(v)

wr(location(copy,i), v)

v ← Load(o,i) →

copy ← getFwd(o)

v ← rd(location(copy,i))

if v = R

v ← rd(location(o,i))

Figure 3.14: Transformations used by Progress.

cessor core and repeatedly modifies a field, storing a different value each time. Even

then, the application thread must out-run the collector – that is, it must execute Store

s at a higher rate than the collector reattempts its copy. This is unlikely due to the

relative simplicity of the copy algorithm; it will almost always complete faster than

a Store. Even if this were not to be the case, the application can be easily throttled

in the case of both processor monopolization and repeated stores to the same field.

Still, this lack of a strong progress guarantee for the collector is unfortunate. The

next section shows some techniques for adding a strong progress guarantee, using an

algorithm called Progress.

3.5 Progress

Progress is a simple collector that attempts to address the lack of the progress

guarantee in Clover. Clover uses R in from-space to mark a field as being copied.

The downside of this design is that the copier can only complete copying by atomically
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copy(tagged) =

foreach o in tagged

setFwd(o, Alloc(len(o), R))

ragged safepoint t in T

nop

foreach o in tagged

copy ← getFwd(o)

for i in [0, len(o)−1]

v ← rd(location(o,i))

CAS(location(copy,i), R→v)

progressPhase ← 2

fixObjectReferences()

progressPhase ← 1

Figure 3.15: The Progress copying algorithm.

asserting that the value copied did not change while installing R. This prevents the

copier from having a strong progress guarantee. Progress does the opposite: it

marks fields as being copied by changing the to-space value from R to something else.

This leads to a simple design. The Store transformation, shown in Fig. 3.14, always

stores to to-space. Load first loads from to-space, and retries the load on from-space

only if to-space still contained R. Thus both Store and Load are wait-free. The copier,

shown in Fig. 3.15, is also wait-free: it reads a field value and performs an unchecked

CAS on to-space to flip the value from R to the value loaded from from-space. This

CAS only fails if the application had stored a new value in to-space; in this case no

copying is necessary.
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This algorithm is elegant, but carries with it a number of flaws. It is not clear

how to implement ObjCAS in Progress. During the ragged safepoint following

installation of forwarding pointers, one thread may complete a ObjCAS on from-

space while another completes a ObjCAS on to-space. This is possible because the

CAS on the field cannot easily be made atomic with respect to the verification of

the forwarding pointer, which may change during the execution of the CAS. This

precludes not only application uses of CAS but also field coalescing. Field coalescing

is an essential feature of Clover, since it decreases the probability of failure from

being exponential in object field width to being exponential in hardware CAS width.

Consider that some programming languages allow for fields as narrow as 8 bits. In

that case the probability of failure would be 1
256

, which is quite high.

This can be side-stepped by using a safepoint, rather than a ragged safepoint, to

ensure that all threads simultaneously acknowledge the start of copying. But using a

safepoint means that there is a Θ(|T |) pause incurred at the start of copying activity.

Hence the usefulness of Progress is limited to those languages where fields are

already large (or already have a reserved value R that does not have to be picked

at random), and where ObjCAS is not exposed to the application. Because this

dissertation considers mainstream languages such as Java and C#, Progress will

not be considered further.

3.6 Implementation of Concurrent Copying in Microsoft Bartok

To compare Chicken and Clover, they have been implemented in the Microsoft

Bartok Research Compiler. Bartok already includes a third concurrent copying collec-

tor, called Stopless, which provides guarantees that are strictly weaker than either

Chicken or Clover [35, 36]. The Bartok system consists of a compiler and a run-

time system. The compiler can be configured to insert different kinds of read- and

write-barriers in the generated code, which allows for the use of different kinds of
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Store and Load transformations. Similarly, the runtime system can be configured to

utilize different kinds of garbage collector algorithms.

The compiler performs ahead-of-time compilation from the CIL byte-code for-

mat [37] to stand-alone executable files. For the purposes of evaluation, the system

is being used in a configuration that generates Intel x86 machine code programs. All

three concurrent real-time collectors have been configured to use the same concurrent

mark-sweep collector as in Stopless [35]. The mark-sweep collector follows ideas

from Doligez et al and Domani et al [18, 19, 38], where the reference write-barrier

ensures that an unmarked object is marked when a reference to the object is over-

written. Allocation is also lock-free except when the user did not correctly configure

the collector for a given applications allocation rate. All three concurrent copying

collectors share a common mechanism for choosing the set of objects to relocate. For

the purposes of evaluating the relative performance of the different collectors, a simple

scheme that is often used with partially compacting collectors has been adopted. En-

tire memory pages that fit evacuation criteria – less than 50% occupancy – are tagged.

At most 10% of all in-use memory pages are chosen for relocation. Compaction is

not necessarily invoked in every garbage collection cycle; for evaluation purposes,

compaction is invoked every 5 garbage collection cycles. Instead of operating within

a pre-determined artificial heap size limit, the garbage collectors are permitted to

use as much memory as they deem necessary. Garbage collection cycles are started

according to an adaptive triggering mechanism that is based upon current heap size

and allocation rate. For evaluation purposes, the concurrent copying collectors all

use the same triggering mechanism.

The read- and write-barriers employed by the concurrent collectors have different

behavior according to which phase the garbage collector is in. To reduce the over-

head of the barriers in the presence of this phase behavior, an optimization called

path-specialization [39] is used for all the garbage collectors. Path-specialization cre-

ates versions of the code that are specialized for being executed in specific subsets of

phases. Code is inserted to ensure that control flow is transferred to the appropriate
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version of the code. Each collector has a set of barrier methods that are used when

the object relocation mechanism is idle and another set of barrier methods for when

the object relocation mechanism is active. While the current implementation features

good real-time responsiveness on the benchmarks that are available to us, it should

be noted that the current system does not provably meet hard real-time guarantees.

This is in part because this implementation is lacking certain features known to be

required for a fully robust real-time garbage collector, and in part because the col-

lectors’ performance has not been analyzed to the extent that would be necessary

to classify them as hard real-time. In particular, the Bartok concurrent mark-sweep

collector does not implement features such as arraylets, stacklets, or priority boost-

ing. Arraylets and stacklets allow for better bounds on large object allocation and

scanning of large stacks, respectively. Priority boosting is needed to guarantee that

threads reach safepoints in a timely manner. If an analysis of how fast the collector

performs all of its key functions – marking, sweeping, and copying – then users could

be provided with a formula for picking tuning parameters such that the collector al-

ways keeps up [14]. In addition to all the above, strict hard real-time systems may

require a verification of the garbage collection code, which is notoriously difficult to

achieve, and poses some open problems.

3.7 Measurements

The test programs used for this evaluation are described in Table 3.1, with some

statistics provided in Table 3.2. The SPECjbb2000 [40] program was translated from

Java into C#. All measurements have been performed on an Intel Supermicro X7D88

dual x86 quad-core workstation running Microsoft Windows Server 2003 R2 Enter-

prise x64 Edition at 2.66GHz with 16GB RAM. Measurements were performed for

collector configurations where the object relocation mechanism was activated every

5 garbage collection cycles. For each non-JBB program, each configuration was run

once in sequence, and the sequence was repeated a total of 5 times. The JBB pro-
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Benchmark Types Methods Instructions Objects Allocated KB Allocated Description

sat 24 260 19,332 8,161,270 171,764 SAT satisfiability program.
lcsc 1,268 6,080 403,976 8,202,479 426,729 A C# front end written in C#.
zing 155 1,088 23,356 12,889,118 928,609 A model-checking tool.
Bartok 1,272 8,987 297,498 434,401,361 11,339,320 The Bartok compiler.
go 362 447 145,803 17,904,648 714,042 The commonly seen Go playing program.
othello 7 20 843 640,647 15,809 The commonly seen Othello program.
xlisp 194 556 18,561 125,487,736 2,012,723 The commonly seen lisp implementation.
crafty 154 340 40,233 1,794,677 217,794 Crafty chess program translated to C#.
JBB 65 506 20,445 501,847,561 54,637,095 JBB ported to C#.

Table 1. Benchmark programs used for performance comparisons.
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Figure 10. Relative execution times for the non-JBB programs.
The execution times have been normalized to that of the concur-
rent base-line non-copying collector. Higher numbers mean slower
execution.
.

does not, to our knowledge, have this problem, as we were careful
to pick the best C# equivalents for the Java classes used by JBB.
All measurements have been performed on an Intel Supermicro

X7D88 dual x86 quad-core workstation running Microsoft Win-
dows Server 2003 R2 Enterprise x64 Edition at 2.66GHz with
16GB RAM.
We performed measurements for collector configurations where

the object relocation mechanism was activated every 5 garbage col-
lection cycles. For each non-JBB program, each configuration was
run once in sequence, and the sequence was repeated a total of 5
times. The JBB program was only run once for each configuration.
When error bars are present in graphs, they represent a 95% confi-
dence interval.
The memory barriers used by our collectors impose an overhead

on the test programs. To characterize this overhead, we measured
the throughput of the programs with the three different collectors
and compared it to the throughput of a system that reclaims garbage
using the base-line mark-sweep non-compacting concurrent collec-
tor. For the non-JBB programs, the relative execution time numbers
are shown in Figure 10. For the JBB program, the JBB transactions
per second for various numbers of warehouses under various col-
lectors are shown in Figure 11. Typically, the CLOVER collector
generally imposes less overhead than does the STOPLESS collec-
tor, and the CHICKEN collector imposes less overhead than do both
the STOPLESS and CLOVER collectors.

Figure 11. Scalability of JBB for different collectors. Higher num-
bers mean more transactions per second, which indicates better per-
formance.

The STOPLESS, CHICKEN, and CLOVER collectors were all de-
signed to be able to support real-time applications that have re-
quirements of extremely short response times. In other words, the
collectors must exhibit extremely short pause times and allow ap-
plications to remain responsive during any and all garbage collec-
tion phases. To demonstrate this, we repeated the responsiveness
measurements of Pizlo et al. [25]. A test program fires events at
a rate of 108KHz (simulating the frequency of high quality audio
samples) and a computation must end before the next event fires.
The test was run with three different computation tasks and with
varying specified sizes. The IntCopy task copies a specified num-
ber of integer values in an array. The test attempts to copy 256, 128,
or 64 integer values. The RefCopy task copies a specified number
of reference values in an array, invoking the reference write barrier
of a collector. The RefStress task is similar to the RefCopy task,
but the program has another thread that repeatedly allocates (and
releases) a 400MB data structure involving over a million objects.
The measurement results for all three collectors as well as for

the non-copying base-line collector are shown in Table 2. As ex-
pected, the two new collectors CHICKEN and CLOVER perform bet-
ter than the previous STOPLESS collector. The non-copying collec-
tor is performing best as expected, but CHICKEN is able to consis-
tently handle the copying of 256 reference values at a frequency of
108KHz, even in the presence of high rate concurrent allocations.
The STOPLESS and CLOVER collectors are unable to consistently
complete this task at such high rate when concurrent stressing allo-
cations are run, because of their heavier barriers. However, they are
able to consistently complete the smaller task of copying 64 values.
The Windows Server operating system, on which we implemented
our collectors, is not a real-time operating system, and we ran our

Figure 3.16: Scalability of JBB for different collectors. Higher numbers mean more

transactions per second, which indicates better performance.

Benchmark Types Methods Instructions Objects Allocated KB Allocated Description

sat 24 260 19,332 8,161,270 171,764 SAT satisfiability program.
lcsc 1,268 6,080 403,976 8,202,479 426,729 A C# front end written in C#.
zing 155 1,088 23,356 12,889,118 928,609 A model-checking tool.
Bartok 1,272 8,987 297,498 434,401,361 11,339,320 The Bartok compiler.
go 362 447 145,803 17,904,648 714,042 The commonly seen Go playing program.
othello 7 20 843 640,647 15,809 The commonly seen Othello program.
xlisp 194 556 18,561 125,487,736 2,012,723 The commonly seen lisp implementation.
crafty 154 340 40,233 1,794,677 217,794 Crafty chess program translated to C#.
JBB 65 506 20,445 501,847,561 54,637,095 JBB ported to C#.

Table 1. Benchmark programs used for performance comparisons.
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Figure 10. Relative execution times for the non-JBB programs.
The execution times have been normalized to that of the concur-
rent base-line non-copying collector. Higher numbers mean slower
execution.
.

does not, to our knowledge, have this problem, as we were careful
to pick the best C# equivalents for the Java classes used by JBB.
All measurements have been performed on an Intel Supermicro

X7D88 dual x86 quad-core workstation running Microsoft Win-
dows Server 2003 R2 Enterprise x64 Edition at 2.66GHz with
16GB RAM.
We performed measurements for collector configurations where

the object relocation mechanism was activated every 5 garbage col-
lection cycles. For each non-JBB program, each configuration was
run once in sequence, and the sequence was repeated a total of 5
times. The JBB program was only run once for each configuration.
When error bars are present in graphs, they represent a 95% confi-
dence interval.
The memory barriers used by our collectors impose an overhead

on the test programs. To characterize this overhead, we measured
the throughput of the programs with the three different collectors
and compared it to the throughput of a system that reclaims garbage
using the base-line mark-sweep non-compacting concurrent collec-
tor. For the non-JBB programs, the relative execution time numbers
are shown in Figure 10. For the JBB program, the JBB transactions
per second for various numbers of warehouses under various col-
lectors are shown in Figure 11. Typically, the CLOVER collector
generally imposes less overhead than does the STOPLESS collec-
tor, and the CHICKEN collector imposes less overhead than do both
the STOPLESS and CLOVER collectors.

Figure 11. Scalability of JBB for different collectors. Higher num-
bers mean more transactions per second, which indicates better per-
formance.

The STOPLESS, CHICKEN, and CLOVER collectors were all de-
signed to be able to support real-time applications that have re-
quirements of extremely short response times. In other words, the
collectors must exhibit extremely short pause times and allow ap-
plications to remain responsive during any and all garbage collec-
tion phases. To demonstrate this, we repeated the responsiveness
measurements of Pizlo et al. [25]. A test program fires events at
a rate of 108KHz (simulating the frequency of high quality audio
samples) and a computation must end before the next event fires.
The test was run with three different computation tasks and with
varying specified sizes. The IntCopy task copies a specified num-
ber of integer values in an array. The test attempts to copy 256, 128,
or 64 integer values. The RefCopy task copies a specified number
of reference values in an array, invoking the reference write barrier
of a collector. The RefStress task is similar to the RefCopy task,
but the program has another thread that repeatedly allocates (and
releases) a 400MB data structure involving over a million objects.
The measurement results for all three collectors as well as for

the non-copying base-line collector are shown in Table 2. As ex-
pected, the two new collectors CHICKEN and CLOVER perform bet-
ter than the previous STOPLESS collector. The non-copying collec-
tor is performing best as expected, but CHICKEN is able to consis-
tently handle the copying of 256 reference values at a frequency of
108KHz, even in the presence of high rate concurrent allocations.
The STOPLESS and CLOVER collectors are unable to consistently
complete this task at such high rate when concurrent stressing allo-
cations are run, because of their heavier barriers. However, they are
able to consistently complete the smaller task of copying 64 values.
The Windows Server operating system, on which we implemented
our collectors, is not a real-time operating system, and we ran our

Figure 3.17: Relative execution times for the non-JBB programs. The exection times

have been mormalized to that of the base-line concurrent non-copying collectors.

Higher numbers mean slower execution.
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Benchmark Description

sat Boolean satisfiability solver

lcsc A C# front end written in C#

zing A model-checking tool

Bartok The Bartok compiler

go Go game playing program

othello Othello game playing program

xlisp Lisp implementation

crafty Chess playing program

JBB SPECjbb2000 ported to C#

Table 3.1: Benchmark programs used for performance comparisons.

Benchmark Types Methods Instructions Objects Allocated KB Allocated

sat 24 260 19,332 8,161,270 171,764

lcsc 1,268 6,080 403,976 8,202,479 426,729

zing 155 1,088 23,356 12,889,118 928,609

Bartok 1,272 8,987 297,498 434,401,361 11,339,320

go 362 447 145,803 17,904,648 714,042

othello 7 20 843 640,647 15,809

xlisp 194 556 18,561 125,487,736 2,012,723

crafty 154 340 40,233 1,794,677 217,794

JBB 65 506 20,445 501,847,561 54,637,095

Table 3.2: Statistics on the behavior of benchmark programs.

gram was only run once for each configuration. When error bars are present in graphs,

they represent a 95% confidence interval. The memory barriers used by Chicken and

Clover impose an overhead on the test programs. To characterize this overhead,
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System Size Task Done Missed High

non-copy 256 IntCopy 99.997% 0.001% 115µs

RefCopy 99.996% 0.001% 47µs

IntStress 99.995% 0.002% 128µs

RefStress 99.991% 0.006% 67µs

Stopless 256 IntCopy 99.997% 0.001% 51µs

RefCopy 99.995% 0.002% 49µs

IntStress 5.357% 49.758% 134µs

RefStress 11.304% 53.861% 145µs

Clover 256 IntCopy 99.997% 0.001% 53µs

RefCopy 99.996% 0.002% 49µs

IntStress 25.766% 38.579% 95µs

RefStress 11.227% 62.448% 132µs

Chicken 256 IntCopy 99.997% 0.001% 67µs

RefCopy 99.994% 0.003% 56µs

IntStress 99.991% 0.003% 118µs

RefStress 99.978% 0.012% 117µs

Stopless 128 IntStress 4.777% 92.308% 68µs

RefStress 92.371% 7.072% 110µs

Clover 128 IntStress 46.280% 49.759% 92µs

RefStress 98.246% 1.589% 97µs

Stopless 64 IntStress 99.973% 0.015% 135µs

RefStress 99.980% 0.010% 108µs

Clover 64 IntStress 99.980% 0.011% 112µs

RefStress 99.969% 0.012% 99µs

Table 3.3: Indicators of overall responsiveness for various garbage collectors for an

event frequency of 108KHz. The IntCopy and RefCopy tasks involve copying a num-

ber of integer and reference values, respectively. The Stress versions of the tasks

add another thread that repeatedly allocates and releases a 400MB data structure

involving over a million objects.
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the throughput of the programs was measured with the three different collectors and

compared to the throughput of a system that reclaims garbage using the base-line

mark-sweep non-compacting concurrent collector. For the non-JBB programs, the

relative execution time numbers are shown in Figure 3.17. For the JBB program, the

JBB transactions per second for various numbers of warehouses under various collec-

tors are shown in Figure 3.16. Typically, the Clover collector generally imposes less

overhead than does the Stopless collector, and the Chicken collector imposes less

overhead than do either the Stopless or Clover.

The Stopless, Chicken, and Clover collectors were all designed to be able

to support real-time applications that have requirements of extremely short response

times. In other words, the collectors must exhibit extremely short pause times and

allow applications to remain responsive during any and all garbage collection phases.

To demonstrate this, the responsiveness measurements of Pizlo et al. [35] were re-

peated. A test program fires events at a rate of 108KHz (simulating the frequency

of high quality audio samples) and a computation must end before the next event

fires. The test was run with three different computation tasks and with varying

specified sizes. The IntCopy task copies a specified number of integer values in an

array. The test attempts to copy 256, 128, or 64 integer values. The RefCopy task

copies a specified number of reference values in an array, invoking the reference write

barrier of a collector. The RefStress task is similar to the RefCopy task, but the

program has another thread that repeatedly allocates (and releases) a 400MB data

structure involving over a million objects. The measurement results for all three col-

lectors as well as for the non-copying base-line collector are shown in Table 3.3. As

expected, the two new collectors Chicken and Clover perform better than the pre-

vious Stopless collector. The non-copying collector is performing best as expected,

but Chicken is able to consistently handle the copying of 256 reference values at a

frequency of 108KHz, even in the presence of high rate concurrent allocations. The

Stopless and Clover collectors are unable to consistently complete this task at

such high rate when concurrent stressing allocations are run, because of their heavier
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System Size Task Done Missed High

non-copy 256 IntCopy 99.997% 0.001% 115µs
RefCopy 99.996% 0.001% 47µs
IntStress 99.995% 0.002% 128µs
RefStress 99.991% 0.006% 67µs

STOPLESS 256 IntCopy 99.997% 0.001% 51µs
RefCopy 99.995% 0.002% 49µs
IntStress 5.357% 49.758% 134µs
RefStress 11.304% 53.861% 145µs

CLOVER 256 IntCopy 99.997% 0.001% 53µs
RefCopy 99.996% 0.002% 49µs
IntStress 25.766% 38.579% 95µs
RefStress 11.227% 62.448% 132µs

CHICKEN 256 IntCopy 99.997% 0.001% 67µs
RefCopy 99.994% 0.003% 56µs
IntStress 99.991% 0.003% 118µs
RefStress 99.978% 0.012% 117µs

STOPLESS 128 IntStress 4.777% 92.308% 68µs
RefStress 92.371% 7.072% 110µs

CLOVER 128 IntStress 46.280% 49.759% 92µs
RefStress 98.246% 1.589% 97µs

STOPLESS 64 IntStress 99.973% 0.015% 135µs
RefStress 99.980% 0.010% 108µs

CLOVER 64 IntStress 99.980% 0.011% 112µs
RefStress 99.969% 0.012% 99µs

Table 2. Indicators of overall responsiveness for various garbage
collectors for an event frequency of 108KHz. The IntCopy and
RefCopy tasks involve copying a number of integer and reference
values, respectively. The Stress versions of the tasks adds another
thread that repeatedly allocates and releases a 400MB data structure
involving over a million objects.

test on a Windows Server’s standard running environment. There-
fore a 100% on-time response should not be expected.
The programwe used to measure responsiveness is roughly sim-

ilar to the HighFrequencyTask used to illustrate the responsiveness
of Eventrons [28]. Our test program tries to perform a larger (and
quantifiable) amount of work for each event than does the HighFre-
quencyTask. The task used by our test program can be considered
somewhat equivalent to a non-null Eventron. Figure 12 shows his-
tograms for the concurrent garbage collectors of the times between
when a timer indicated that the task should be commenced and
when the task was actually completed. The histogram shows that
concurrent collectors support programs that require extremely short
response times. The histogram has two peaks. One is at around 1
microseconds, which represents the time it takes to perform the
task when the garbage collector is in the idle phase. The other peak
is at 3 microseconds for CLOVER and 4 microseconds for STOP-
LESS and represents the time it takes to perform the task when the
garbage collector is in a non-idle phase. For CHICKEN the task is
completed at around 1 microsecond even in the non-idle phase.
It is not possible to make a direct comparison between the

results presented here and those from [28] because the tests are run
on different machines and different underlying operating systems.
However, the results of the garbage collected environment with our
compacting collectors seem at the very least comparable to the non-
garbage-collected environment in that paper. A support for events
that occur in such high frequency has not been reported in the
literature before.
The STOPLESS and CHICKEN collectors may both fail to relo-

cate objects that have been chosen for relocation. The failure to re-
locate an object may defeat the purpose of relocating any number of
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Figure 12. Histogram of how long after an event occurred the
scheduled task was completed. The task was to copy 64 reference
values in the presence of a competing allocating thread (RefStress).
The events were scheduled to occur every 9.26µs, which is roughly
equivalent to a frequency of 108KHz. Tasks may be started late due
to a previous task running late. Tasks not started prior to the start
of the next event were skipped.
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Figure 13. The rate of failure of the STOPLESS and CHICKEN
collectors to relocate an object that has been chosen for relocation.
Smaller numbers are desirable.

other objects, and is therefore clearly undesirable. We measured the
failure rate of attempted object relocations for both the STOPLESS
and CHICKEN collectors, where the CHICKEN collector is run in
a worst-case (most aborting) mode in which all objects are copied
with a single handshake. If a failure to relocate defeats the purpose
of relocating additional objects (for example if the collector desired
to have an entire page evacuated), then we count those additional
objects as also having failed. The results are shown in Figure 13.
As expected, the CHICKEN collector in its worst-case mode suffers
from a higher copying aborting rate than does the STOPLESS col-
lector. Another cause of failure is the one for CLOVER in which
the program uses the ! value that is randomly chosen by CLOVER.
We have not witnessed that happening in the runs we made, and
we do not expect such an event to happen during one’s lifetime. No
relevant measurements can be made.

Figure 3.18: Histogram of how long after an event occurred the scheduled task was

completed. The task was to copy 64 reference values in the presence of a competing

allocating thread (RefStress). The events were scheduled to occur every 9.26µs, which

is roughly equivalent to a frequency of 108KHz. Tasks may be started late due to

a previous task running late. Tasks not started prior to the start of the next event

were skipped.

barriers. However, they are able to consistently complete the smaller task of copying

64 values. The Windows Server operating system, on which the collectors were im-

plemented, is not a real-time operating system, and the tests were run on Windows

Server’s standard running environment. Therefore a 100% on-time response should

not be expected.

The program used to measure responsiveness is roughly similar to the HighFre-

quencyTask used to illustrate the responsiveness of Eventrons [41]. The test program

used here tries to perform a larger (and quantifiable) amount of work for each event

than does the HighFrequencyTask. The task used by this test program can be con-

sidered somewhat equivalent to a non-null Eventron. Figure 3.18 shows histograms
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System Size Task Done Missed High

non-copy 256 IntCopy 99.997% 0.001% 115µs
RefCopy 99.996% 0.001% 47µs
IntStress 99.995% 0.002% 128µs
RefStress 99.991% 0.006% 67µs

STOPLESS 256 IntCopy 99.997% 0.001% 51µs
RefCopy 99.995% 0.002% 49µs
IntStress 5.357% 49.758% 134µs
RefStress 11.304% 53.861% 145µs

CLOVER 256 IntCopy 99.997% 0.001% 53µs
RefCopy 99.996% 0.002% 49µs
IntStress 25.766% 38.579% 95µs
RefStress 11.227% 62.448% 132µs

CHICKEN 256 IntCopy 99.997% 0.001% 67µs
RefCopy 99.994% 0.003% 56µs
IntStress 99.991% 0.003% 118µs
RefStress 99.978% 0.012% 117µs

STOPLESS 128 IntStress 4.777% 92.308% 68µs
RefStress 92.371% 7.072% 110µs

CLOVER 128 IntStress 46.280% 49.759% 92µs
RefStress 98.246% 1.589% 97µs

STOPLESS 64 IntStress 99.973% 0.015% 135µs
RefStress 99.980% 0.010% 108µs

CLOVER 64 IntStress 99.980% 0.011% 112µs
RefStress 99.969% 0.012% 99µs

Table 2. Indicators of overall responsiveness for various garbage
collectors for an event frequency of 108KHz. The IntCopy and
RefCopy tasks involve copying a number of integer and reference
values, respectively. The Stress versions of the tasks adds another
thread that repeatedly allocates and releases a 400MB data structure
involving over a million objects.

test on a Windows Server’s standard running environment. There-
fore a 100% on-time response should not be expected.
The programwe used to measure responsiveness is roughly sim-

ilar to the HighFrequencyTask used to illustrate the responsiveness
of Eventrons [28]. Our test program tries to perform a larger (and
quantifiable) amount of work for each event than does the HighFre-
quencyTask. The task used by our test program can be considered
somewhat equivalent to a non-null Eventron. Figure 12 shows his-
tograms for the concurrent garbage collectors of the times between
when a timer indicated that the task should be commenced and
when the task was actually completed. The histogram shows that
concurrent collectors support programs that require extremely short
response times. The histogram has two peaks. One is at around 1
microseconds, which represents the time it takes to perform the
task when the garbage collector is in the idle phase. The other peak
is at 3 microseconds for CLOVER and 4 microseconds for STOP-
LESS and represents the time it takes to perform the task when the
garbage collector is in a non-idle phase. For CHICKEN the task is
completed at around 1 microsecond even in the non-idle phase.
It is not possible to make a direct comparison between the

results presented here and those from [28] because the tests are run
on different machines and different underlying operating systems.
However, the results of the garbage collected environment with our
compacting collectors seem at the very least comparable to the non-
garbage-collected environment in that paper. A support for events
that occur in such high frequency has not been reported in the
literature before.
The STOPLESS and CHICKEN collectors may both fail to relo-

cate objects that have been chosen for relocation. The failure to re-
locate an object may defeat the purpose of relocating any number of
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Figure 12. Histogram of how long after an event occurred the
scheduled task was completed. The task was to copy 64 reference
values in the presence of a competing allocating thread (RefStress).
The events were scheduled to occur every 9.26µs, which is roughly
equivalent to a frequency of 108KHz. Tasks may be started late due
to a previous task running late. Tasks not started prior to the start
of the next event were skipped.
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Figure 13. The rate of failure of the STOPLESS and CHICKEN
collectors to relocate an object that has been chosen for relocation.
Smaller numbers are desirable.

other objects, and is therefore clearly undesirable. We measured the
failure rate of attempted object relocations for both the STOPLESS
and CHICKEN collectors, where the CHICKEN collector is run in
a worst-case (most aborting) mode in which all objects are copied
with a single handshake. If a failure to relocate defeats the purpose
of relocating additional objects (for example if the collector desired
to have an entire page evacuated), then we count those additional
objects as also having failed. The results are shown in Figure 13.
As expected, the CHICKEN collector in its worst-case mode suffers
from a higher copying aborting rate than does the STOPLESS col-
lector. Another cause of failure is the one for CLOVER in which
the program uses the ! value that is randomly chosen by CLOVER.
We have not witnessed that happening in the runs we made, and
we do not expect such an event to happen during one’s lifetime. No
relevant measurements can be made.

Figure 3.19: The rate of failure of the Stopless and Chicken collectors to relocate

an object that has been chosen for relocation. Smaller numbers are desirable.

Figure 14. Distributions of transaction times on our three collectors, as well as a stop-the-world collector for comparison. We compare
against a mark-sweep collector here as it had the best worst case performance of the non-incremental stop-the-world collectors in our
infrastructure.

We studied these three collectors for the absolute and relative prop-
erties. We have also implemented all three collectors and presented
measurements of their performance and overheads.

References

[1] Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. An
on-the-fly mark and sweep garbage collector based on sliding view.
OOPSLA 2003.

[2] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage
collecor with low overhead and consistent utilization. In POPL 2003.

[3] Henry G. Baker. List processing in real-time on a serial computer.
CACM, 21(4):280–94, 1978.

[4] Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner,
Victor Leikehman, Yoav Ossia, Avi Owshanko, and Erez Petrank. A
parallel, incremental, mostly concurrent garbage collector for servers.
TOPLAS 27(6):1097–1146, November 2005.

[5] Guy E. Blelloch and Perry Cheng. On bounding time and space for
multiprocessor garbage collection. PLDI , 1999.

[6] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly
parallel garbage collection. SIGPLAN Notices, 26(6):157–164, 1991.

[7] Rodney A. Brooks. Trading data space for reduced time and code
space in real-time garbage collection on stock hardware. the 1984
Symposium on Lisp and Functional Programming, 1984.

[8] Perry Cheng and Guy Blelloch. A parallel, real-time garbage
collector. In PLDI , 2001.

[9] Cliff Click, Gil Tene, and Michael Wolf. The pauseless GC algorithm.
VEE, 2005.

[10] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exercise in
cooperation. CACM, 21(11):965–975, 1978.

[11] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In POPL 1994.

[12] Damien Doligez and Xavier Leroy. A concurrent generational
garbage collector for a multi-threaded implementation of ML. POPL
1993.

[13] Tamar Domani, Elliot Kolodner, and Erez Petrank. A generational
on-the-fly garbage collector for Java. PLDI 2000.

[14] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Elliot E. Salant,

Katherine Barabash, Itai Lahan, Erez Petrank, Igor Yanover, and
Yossi Levanoni. Implementing an on-the-fly garbage collector for
Java. ISMM 2000.

[15] ECMA. Standard ECMA-335, Common Language Infrastructure
(CLI), 4th edition edition, June 2006.

[16] Roger Henriksson. Scheduling Garbage Collection in Embedded
Systems. PhD thesis, Lund Institute of Technology, 1998.

[17] Maurice Herlihy and J. Eliot B Moss. Lock-free garbage collection
for multiprocessors. IEEE Tran. Paral. & Dist. Sys., 3(3), May 1992.

[18] Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying GC
without stopping the world. In Joint ACM Java Grande — ISCOPE

2001 Conference, 2001.

[19] Richard E. Jones and Rafael Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley, Chichester,
1996.

[20] Haim Kermany and Erez Petrank. The Compressor: Concurrent,
incremental and parallel compaction. PLDI 2006.

[21] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting
garbage collector for Java. OOPSLA 2001.

[22] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting
garbage collector for Java. TOPLAS, 28(1), 2006.

[23] Matthias Meyer. A true hardware read barrier. ISMM 2006.

[24] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor
Leikehman, and Avi Owshanko. A parallel, incremental and
concurrent GC for servers. PLDI 2002.

[25] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne Steensgaard.
Stopless: A real-time garbage collector for modern platforms. ISMM
2007.

[26] Tony Printezis and David Detlefs. A generational mostly-concurrent
garbage collector. ISMM 2000.
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Figure 3.20: Distribution of transaction times on our three collectors, as well as

a stop-the-world collector for comparison. The performance is compared against a

mark-sweep collector here as it had the best worst-case performance of the non-

incremental stop-the-world collectors in the Bartok infrastructure.
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for the concurrent garbage collectors of the times between when a timer indicated

that the task should be commenced and when the task was actually completed. The

histogram shows that concurrent collectors support programs that require extremely

short response times. The histogram has two peaks. One is at around 1 microseconds,

which represents the time it takes to perform the task when the garbage collector is in

the idle phase. The other peak is at 3 microseconds for Clover and 4 microseconds

for Stopless and represents the time it takes to perform the task when the garbage

collector is in a non-idle phase. For Chicken the task is completed at around 1 mi-

crosecond even in the non-idle phase. It is not possible to make a direct comparison

between the results presented here and those from Eventrons [41] because the tests

are run on different machines and different underlying operating systems. However,

the results of the garbage collected environment with Clover and Chicken seem

at the least comparable to the non-garbage-collected environment in that paper. A

support for events that occur in such high frequency has not been reported in the

literature before.

The Stopless and Chicken collectors may both fail to relocate objects that have

been chosen for relocation. The failure to relocate an object may defeat the purpose

of relocating any number of other objects, and is therefore clearly undesirable. The

failure rate of attempted object relocations was measured for both the Stopless and

Chicken collectors, where the Chicken collector is run in a worst-case (most abort-

ing) mode in which all objects are copied with a single ragged safepoint. If a failure

to relocate defeats the purpose of relocating additional objects (for example if the

collector desired to have an entire page evacuated), then those additional objects are

counted as also having failed. The results are shown in Figure 3.19. As expected, the

Chicken collector in its worst-case mode suffers from a higher copying aborting rate

than does the Stopless collector. Another cause of failure is the one for Clover in

which the program uses the R value that is randomly chosen by Clover. No test

performed thus far has ever shown Clover failing, and such a failure is not expected

in our lifetimes. No relevant measurements can be made.
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The JBB benchmark was also used for responsiveness experiments. JBB trans-

actions normally run for about a millisecond. For the highly responsive collectors

presented here, this does not pose a responsiveness challenge. It is noteworthy that

this represents a different class of real-time application than what is targetted by

Chicken and Clover; these collectors are indended to be used in systems that

deal with much shorter timescales. On timescales that are substantially below a mil-

lisecond, collector pauses such as those seen in previous real time garbage collection

work would be disastrous; it is exactly in those cases that the greatest potential ben-

efit exists to using the approaches of this chapter. When dealing with millisecond

timescales, collectors with sub-millisecond pauses are likely to perform as well as –

or even better than – Cloveror Chicken, in much the same way that a well tuned

stop-the-world non-real-time collector will outperform any real time garbage collec-

tor in a long timescale throughput test. Nevertheless, the results in Figure 3.20 are

interesting. Since different transactions run in different phases of the collector run,

they demonstrate various latencies, showing the overhead of the slow paths of the

barriers. As expected, there are no transactions that take extremely long to execute.

Chicken, the fastest known concurrent copying collector, has a narrow distribution

of transaction times with a maximum of 1ms.2 Clover has a worst case of 3ms while

Stopless is a bit worse, with a worst case of 5ms. Figure 3.20(a) shows the perfor-

mance of the stop-the-world mark-sweep collector for comparison. Since JBB triggers

many collections, there is a good chance that some transactions will take significantly

longer than normalin the worst case we see 70ms. In tests of other stop-the-world

collectors – for example, Bartok’s generational collector – the results were generally

worse in the worst case than the mark-sweep collector.

2This performance is identical to the base-line non-copying concurrent mark-sweep collector. Hence,
with Chicken there is no measurable overhead to copying in this test.
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3.8 Discussion

This chapter introduced three techniques for concurrent object copying. Chicken

copies objects concurrently to application execution, so long as those objects are not

modified during copying. Clover always copies objects, but requires a lock-free

(rather than wait-free) implementation of Store, and may sometimes fail, either by

stalling program execution or by causing heap corruption. Progress always copies

objects and uses a wait-free Store, but is less flexible than Clover because it does

not allow for a straight-forward lock-free implementation of ObjCAS. All three algo-

rithms exhibit better performance than prior approaches, in that they never require

pausing the entire application, never require Store or Load to block, and allow for

heap actions to complete in O(1) time. However, none of these techniques is perfect.

It appears that there is no currently known approach for enabling fragmentation

tolerance concurrently with wait-free heap accesses, if the strategy for dealing with

fragmentation is to copy objects. The next chapter deals with an alternate solution

to fragmentation: instead of copying objects to evacuate fragmented regions of the

heap, fragmentation is instead embraced. A fragmented heap is allowed to stay frag-

mented, but the collector ensures that it can still satisfy allocation requests even if

no large enough contiguous free region of space exists.
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4 FRAGMENTATION TOLERANT REAL TIME GARBAGE COLLECTION

Fragmentation does not cause space overhead if the collector is only used to allocate

objects of one size. Consider a simple system where Alloc(n) can only be called for

n = 2.1 A simple collector would partition H into a list of cells of length 2 (plus

some locations for a header used for marking). Free cells can be maintained in a

linked list. Each allocation removes the head of the list. Sweeping places cells onto

the list. This leads to O(1) allocation regardless of fragmentation. Alternatively, the

CMR collector from Chapter 2 could be used, and is specifically designed to be able

to satisfy such small fixed-size allocation requests in O(1) time. At the beginning,

each allocation will bump a pointer in each page. Objects of length 2 will be allocated

next to each other. As objects are freed, they either become free lines, or entire pages

are freed. So long as there is any free space in the heap, free line allocation will

succeed in O(1) time upon stumbling on the first page or line, since every line will be

big enough to satisfy every request.

Fixed-size allocations make fragmentation tolerance simple. But it would seem

that the fixed-size allocation approach will not work for mainstream languages like

Java, C#, or ML, since they allow for variable-size objects. Siebert [42–44] was

the first to realize a solution to this problem by modifying the language runtime

to transparently split variable-size objects into fixed-size fragments, and link them

together using tries. A trie allows for O(log n) indexing of object elements, where n

is the size of the object. This leads to wait-free, but not O(1), implementations of

Store and Load.

This chapter explores Siebert’s fragmented allocation approach in detail and intro-

duces a new approach, called Schism, that improves Siebert’s by reducing the cost of

1This is the approach used in the original Lisp [1] system, where the only objects were cons cells
that consisted of a first element (car) and a second element (cdr).
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len(o) =

if pslen(o) 6= 0

return pslen(o)

else

return trlen(o)

location(o,i) =

if pslen(o) 6= 0

return o + 4 + i

else

subTreeHeight ← dlog8 trlen(i)/4e

cur ← o + 4 + (i >> (subTreeHeight ∗ 3))

for level in [0, subTreeHeight − 1]

fragment ← rd(cur)

cur ← fragment + ((i >> ((subTreeHeight − level − 1) ∗ 3)) & 7)

return cur

Figure 4.1: Siebert/cmr’s helper functions for determining the length of an object

and locating an object element.

heap accesses to O(1) regardless of object size, heap size, or degree of fragmentation.

An implementation of Siebert’s algorithm in CMR, called Siebert/cmr, is shown

first, followed by a discussion of Schism and its implementation, Schism/cmr.

4.1 Implementing Siebert’s fragmented allocation in CMR

All collectors presented so far have used a contiguous object structure. But the

Alloc, Store, and Load model of the heap presented to the application does not man-
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date contiguity. Siebiert’s collector takes advantage of this, and uses transformations

that traverse a network of discontiguous blocks of memory on each access. This section

presents Siebert/cmr, an implementation of this strategy for dealing with fragmen-

tation on top of the CMR framework presented in Chapter 2. Objects consists of one

or more fragments, where each fragment consists of a multiple of 8 memory locations.

This follows Siebert’s design, which uses 32 bytes for each fragment when running

on 32-bit systems. [42] Object references always point to the distinguished sentinel

fragment s, which contains a 4 location garbage collector header and 4 or more spare

locations. Whenever possible, Siebert/cmr will allocate objects contiguously. This

opportunistic optimization is only performed during CMR bump-allocation, if the

distance between the bump pointer and the end of the current thread-local alloca-

tion region is greater than the size of the requested allocation. Otherwise, objects

are allocated in strict 8-location fragments. The sentinel header consists of marking

headers flag(s) and next(s) as in CMR, a pseudo-length pslen(s), and the true length

trlen(s). Objects allocated contiguously will have pslen(s) 6= 0, and the true length field

trlen(s) will be dropped. The location of the true length is used for the first object

element (element 0) if the object is contiguous. Objects allocated in fragments will

have pslen(s) = 0, and the true length will contain the actual length of the object. As

a special case, objects of length 0 will have pslen(s) = 0 and trlen(s) = 0. The actual

length of the object can be retrieved using a helper function len(o) that is shown in

Figure 4.1.

flag(s) = rd(s) next(s) = rd(s+1)

pslen(s) = rd(s+2) trlen(s) = rd(s+3)

The remaining elements of the sentinel either hold the entire contents (payload) of

the object, or references to other object fragments. The sentinel will hold the payload

if the object has length 5 or less, or of opportunistic contiguous allocation succeeded.

The fragments of an object with more than 5 elements are organized into a trie with

the payload at the leaves. A trie is a kind of tree data structure used for dictionary

lookup, similarly to a search tree. However, unlike a search tree where the decision
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of which branch to take during a traversal is based on key comparison, traversal of a

trie is performed using prefixes. Given a node with N branches and a key (typically

a sequence of bits) K, the first log N bits of K are used to index the appropriate

branch to take. The trie traversal then repeats on the chosen subtree, with the log N

bit prefix of K removed. As in CMR, Siebert/cmr uses a location(o,i) function to

find the location of an object element. This will either perform a lookup similar to

the one used in the base CMR (if the object is contiguous, that is if pslen(s) 6= 0), or a

trie search. The location(o,i) function is shown in Figure 4.1. When a trie traversal is

necessary, this function special-cases the sentinel since it will only contain 4 references,

while the fragments in its subtrees will contain 8 references each. The subTreeHeight

is thus the height of the subtrees of the sentinel. For example, any object with length

greater than or equal to 6 and less than or equal to 32 will have subTreeHeight = 1,

indicating that the fragments referenced by the sentinel directly contain the payload.

Object lengths in the range [33, 256] will have subTreeHeight = 2, and so on.

The only other functions in CMR that must be changed to support Siebert/cmr

are Alloc and shadeObject(o). Figure 4.3 shows the Alloc implementation and its helper

function, buildTrie(n,h,v) given the number of elements n, the trie height h, and the

initial value v. The fast path of Alloc is to allocate the object contiguously. If this

does not work, a trie is built using the recursive buildTrie(n,h,v) function. Figure 4.4

shows the object shading implementation, which overrides CMR’s shadeObject(o) but

utilizes shadeBlock(base,len). This function recursively traverses the trie structure and

ensures that every 8-location block used by the object is separately shaded.

Discussion Siebert/cmr provides concurrent, wait-free fragmentation tolerance

by ensuring that if fragmentation occurs, objects can be allocated in small fragments

and linked together into a trie structure. Unfortunately, this increases the cost of heap

accesses significantly. Consider the location(o,i) implementation in CMR, which just

computes the sum i+3+i, versus the same function in Siebert/cmr, which requires

an additional branch, a loop, multiple loads, and a significant amount of arithmetic.
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buildTrie(n,h,v) =

node ← allocRaw(8)

for i in [0,7]

wr(node+i, 0)

if h 6= 0

cur ← 0

while cur < n

step ← min(1<<(h∗3), n−cur)

wr(node+i, buildTrie(step,h−1,v))

cur ← cur + step

return node

Figure 4.2: The Siebert/cmr trie building helper function.

Heap accesses in Siebert/cmr will require O(log n) time for an object of length n,

while the CMR collector, as well as the concurrent copying collectors of Chapter 3

all complete heap accesses in O(1) time. This shortcoming of Siebert’s approach is

the motivation of the Schism algorithm presented in this chapter.

4.2 Reducing the cost of heap accesses with Schism

Siebert/cmr provides wait-free heap accesses, but performs poorly for large

objects if opportunistic contiguous allocation fails. The reason for this poor perfor-

mance is the use of tries as an indexing structure. Tries were chosen because they

are the most efficient known indexing method when using fixed-size objects. Previ-

ous attempts at concurrent fragmentation tolerance used object copying instead of

fixed-size objects. Baker’s algorithm for copying resulted in O(n) object accesses,
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o ← Alloc(n,v) →

contSize ← dlen2size(n)/8e ∗ 8

if A[self].bump + contSize − A[self].start ≤ A[self].size

l ← A[self].bump

A[self].bump ← l + contSize

wr(l+2,n)

if n = 0 wr(l+3,0)

elsif contSize = 8

l ← allocRaw(8)

wr(l+2,n)

if n = 0 wr(l+3,0)

else

l ← allocRaw(8)

wr(l+2,0)

wr(l+3,n)

foreach i in [4,7] wr(l+i,0)

subTreeHeight ← dlog8 n/4e

cur ← 0

while cur < n

step ← min(1<<(subTreeHeight∗3), n−cur)

wr(l+4+i, buildTrie(step,subTreeHeight,v))

cur ← cur + step

wr(l,fA)

wr(l+1,0)

foreach i in [0,n−1] wr(location(l,i),v)

return l

Figure 4.3: The Siebert/cmr allocation function. The buildTrie() helper function is

shown in Figure 4.2.
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shadeTrie(h,node) =

if node 6= 0

shadeBlock(node,8)

if h 6= 0

for i in [0,7]

shadeTrie(h−1,rd(node+i))

shadeObject(o) =

if pslen(o) 6= 0

shadeBlock(o, dsize(o)/8e∗8)

elsif trlen(o) = 0

shadeBlock(o, 8)

else

shadeBlock(o, 8)

subTreeHeight ← dlog8 trlen(o)/4e

foreach i in [4,7]

shadeTrie(subTreeHeight,rd(o+i))

Figure 4.4: The Siebert/cmr object shading function.

while Brooks and ChengBlelloch has O(1) object accesses but at the cost of

long pauses. ChengBlelloch’s pauses are less frequent, but heap stores require

an atomic section. The ChengBlelloch atomic section that is used to aid the

collector log can be eliminated using the same techniques as in CMR, but the sec-

ond atomic section, used to synchronize concurrent stores to the from- and to-space

object copies, is required in any application that may simultaneously store to the

same object element from multiple threads. The algorithms presented in Chapter 3,
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Chicken, Clover, and Progress, all allow for either wait-free or lock-free object

accesses, but carry their own costs. Chicken will not guarantee that objects are

successfully copied, Clover is not wait-free and is probabilistically lock-free at best,

and Progress does not permit a straight-forward implementation of ObjCAS. Thus,

it would seem that all known solutions to concurrent fragmentation tolerance have

imperfect trade-offs: to gain attractive properties in one area (such as heap access

execution time), it is necessary to lose much-needed properties in another (such as

pause time and heap access progress guarantees).

This begs the question: can some subset of these techniques be combined in

some way that leads to a perfect algorithm with wait-free, O(1), fully concurrent

fragmentation tolerance? Schism is a result of following this intuition. Consider

the trie structure used in Siebert/cmr. Instead of a trie, a fragmented allocation

collector could instead use a single arbitrarily large contiguous array as an index

into the payload fragments. This contiguous array is called a spine and this general

technique of breaking arrays into a two-level structure is known as arraylets. [15] The

payload fragments would avoid fragmentation because they always have fixed size.

Heap accesses would only require an additional indirection; the location(o,i) function

would simply load the address of the appropriate fragment from the spine. The

problem with this approach is that the spine would still lead to fragmentation.

Schism solves the spine fragmentation problem by observing that the spine is

immutable. That is, allocation will initialize it once by making it refer to newly

allocated non-moving payload fragments, but after this is complete, the spine will

never be modified again. ChengBlelloch, Chicken, and Progress all perform

well for immutable objects. ChengBlelloch turns out to perform best: it requires

no modifications to the protocol for loading from the spine, and the protocol for

storing (used only when first initializing the spine) can avoid the atomic section

because only one thread will ever initialize any spine.

This leads to a simple and elegant algorithm for concurrent, wait-free, O(1) frag-

mentation tolerance. Two collectors are used. One collector manages non-moving
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fixed-size object fragments. This collector can be styled after CMR. Another collec-

tor manages variable-size immutable spines. This collector can be styled afer Cheng-

Blelloch, but is significantly simplified to account for the immutability of spines.

Each collector manages its own heap, and each allocation uses both collectors simul-

taneously. The spines are always roughly 1
8

the size of the fragments. Thus, the spine

space is roughly 2 × 1
8

= 1
4

the size of the fragment space, to account for the spine

copy reserve. Thus even though space usage is fragmented in the sense that object

data is scattered between two heaps, the application is given the illusion of a single,

space-efficient, fragmentation tolerant heap since no heap shape can ever cause an

allocation to fail if there is enough total free space.

4.3 Implementing Schism in CMR

Schism/cmr combines a concurrent, wait-free, semi-space replication-style col-

lector with the CMR. CMR is used in a similar way to Siebert/cmr, in that objects

are allocated contiguously when it is possible to do so in O(n) time, or as fixed-size

fragments when it isn’t. The collector can be configured to use fragments of any size

greater than or equal to 4 locations, as this is the minimum size needed for the header.

The fragsize constant is used to refer to the size of fragments. Optimal performance

is achieved for powers of two, as this simplifies the divisions and remainders in the

transformations to power-of-2 bit-shift operations. While the algorithm is presented

with configurable fragment size, the default is to follow Siebert and use fragsize = 8.

This section describes describes the Schism/cmr object structure, the transforma-

tions used for Store, Load, and Alloc, the semi-space replicating collector, and finally

the Schism/cmr collector thread, which executes both CMR and the semi-space

collector in tandem. Finally, some optional optimizations are discussed as well as an

analysis of Schism/cmr’s fragmentation tolerance.
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f n p payload

(a) An array with ≤ 4-location payload and

fragsize = 8. The payload is inlined.

f n spine0 t payload

(b) An array with a 5 to 24-location payload payload

and fragsize = 8. The sentinel contains the flag(s),

next(s), pslen(s) = 0, spine(s), and trlen(spine(s)) loca-

tions. The remainder of the sentinel contains an

inlined spine.

spine

f n 0 payload

tf

(c) An array with a payload > 24 locations payload

and fragsize = 8.

Figure 4.5: Fragmented allocation in Schism/cmr.

4.3.1 Object Structure

Object references in Schism/cmr refer to a sentinel, which may either contain the

entire object payload if the object is small or if the contiguous allocation succeeded,

or may contain the entire spine if it is small enough, or may just be used to as a handle

that holds a reference to the spine. The sentinel has a 4 location header, followed by

fragsize − 4 spare locations. The header compires flag(s), next(s), the pseudo-length

pslen(s), and the spine pointer spine(s).
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flag(s) = rd(s) next(s) = rd(s+1)

pslen(s) = rd(s+2) spine(s) = rd(s+3)

headsize = 4

The spine spine(s) pointer refers to the third location in the spine; the previous

two locations fwd(spine(s)) and trlen(spine(s)) are used for a forwarding pointer and the

true length, respectively.

fwd(spine(s)) = rd(spine(s)−2) trlen(spine(s)) = rd(spine(s)−1)

Assuming fragsize = 8, the structure of objects in Schism/cmr is shown in Fig-

ure 4.5. Array accesses first check if the pseudo-length is non-zero; it will always be

zero for fragmented arrays in which case a spine lookup is used. The sentinel may

point to a spine or may have the entire array inlined (if it is small enough to fit in

the remaining sentinel locations after the header, or if opportunistic contiguous array

allocation succeeded). The inline payload case is shown in Figure 4.5(a). The spine

itself may live inside the sentinel if it can fit in the remaining sentinel locations. In

the case of 8-location fragments, the spine uses one location for the length and the

remaining 3 locations for pointers to payload fragments (Figure 4.5(b)). If the spine

cannot fit into the sentinel (i.e., has more than 24 locations, or 3 fragments, in the

case of 8-location fragments) then the spine will be allocated in the spine space (Fig-

ure 4.5(c)). In this case the sentinel has just four location in it and the remaining

locations are wasted to achieve alignment.

The use of a sentinel that introduces an extra indirection to get to the spine results

in a slight overhead for heap accesses, but simplifies heap fix-up when the spine space

is concurrently copied. This is because each spine is referenced only from itself (via

the forwarding pointer) and from exactly one sentinel. This allows Schism/cmr to

implement quick-release: as soon as copying for spines is finished, the spine from-

space can be dropped without requiring any further fix-up of thread local variables

or the CMR heap.
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len2size(n) =

if n = 0

return headsize + 1

else

return headsize + n

len(o) =

if pslen(o) 6= 0

return pslen(o)

else

return trlen(spine(o))

location(o,i) =

if pslen(o) 6= 0

return o + 4 + i

else

return rd(spine(o) + (i / fragsize)) + (i % fragsize)

shadeObject(o) =

if pslen(o) 6= 0

shadeBlock(o, dsize(o)/fragsizee∗fragsize)

else

shadeBlock(o, fragsize)

foreach i in [0, dlen(o)/fragsizee−1]

fragment ← rd(spine(o)+i)

if fragment 6= 0

shadeBlock(fragment, fragsize)

Figure 4.6: Schism/cmr’s helper functions for determining the length of an object,

locating an object element, and shading an object.
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buildSpine(o,n) =

wr(o+2,0)

if dn/fragsizee ≤ fragsize−headsize−1

wr(o+3,o+5)

wr(o+4,n)

foreach i in [0, dn/fragsizee−1]

fragment ← allocRaw(fragsize)

wr(o+5+i, fragment)

else

wr(o+3,allocSpine(n))

foreach i in [0, dn/fragsizee−1]

fragment ← allocRaw(fragsize)

oldSpine ← spine(o)

newSpine ← fwd(oldSpine)

wr(oldSpine+i, fragment)

wr(newSpine+i, fragment)

acknowledge safepoint

Figure 4.7: The Schism/cmr spine building function.

4.3.2 Transformations

Like Siebert/cmr, Schism/cmr needs to change how CMR calculates the ob-

ject length, locates object elements, allocates objects, and shades objects. Object

length and element computation are simple O(1) operations. Shading traverses the

spine to find all of the fragments of the object in the CMR heap, with guards in place

to ensure that if the fragments are still in the process of being allocated (i.e. if the
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o ← Alloc(n,v) →

contSize ← dlen2size(n)/fragsizee ∗ fragsize

if A[self].bump + contSize − A[self].start ≤ A[self].size

l ← A[self].bump

A[self].bump ← l + contSize

wr(l+2,n)

if n = 0

wr(l+3,l+5)

wr(l+4,0)

elsif contSize = fragsize

l ← allocRaw(fragsize)

wr(l+2,n)

if n = 0

wr(l+3,l+5)

wr(l+4,0)

else

l ← allocRaw(fragsize)

buildSpine(l,n)

wr(l,fA)

wr(l+1,0)

foreach i in [0,n−1]

wr(location(l,i),v)

return l

Figure 4.8: The Schism/cmr allocation function.
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collector has preempted Alloc) then the shading will still be correct. These functions

are shown in Figure 4.6.

Allocation (Figure 4.8) is more involved due to the need to build spines. The

buildSpine(o,n) helper function shown in Figure 4.7 is responsible for allocating spines.

This function needs to use both the CMR and the semi-space collector simultane-

usly. The semi-space collector, shown in the next section, provides a spine allocation

function allocSpine(n), where n is the true length of the object. Allocation begins by at-

tempting opportunistic contiguous bump-pointer. If this fails, a sentinel is allocated.

The sentinel will contain an inlined spine if the spine holds fragsize−headsize−1 frag-

ment references or less, or will contain a pointer to a spine allocated using allocSpine(n)

otherwise. For large spines, spine initialization is designed to be able to acknowledge

collector safepoints. This ensures that long spine allocations do not stall collec-

tion, and is the reason why each iteration of Alloc’s spine initialization loop reloads

the spine pointer, and its forwarding pointer, from the sentinel. Note the use of a

ChengBlelloch-style replicated store of the fragment pointer, which ensures that

if the spine is in the process of being copied, both the from- and to-space copies will

contain the right pointer.

4.3.3 Semi-space Replicator

The semi-space replicating garbage collector used in Schism/cmr is largely in-

spired by Cheng and Blelloch and Nettles and O’Toole [21, 22], but leverages addi-

tional properties not found in those systems:

• Spines are immutable. The spine space starts out being initialized to 0. Newly

allocated spines thus have 0 in all fragment pointer locations. The only stores to

spines are during allocation, when all fragment pointer locations are initialized

to point to newly allocated fragments. This is the only place where a repli-

cating store is used, and the collector is guaranteed to never have to deal with



144

concurrent replicating stores to the same location. As a result, atomic sections

are not needed when accessing to the spine.

• Spines and sentinels have a one-to-one mapping, and object references only

ever point to the non-moving sentinels. A traditional replicator has to cope

with updating potentially many pointers to relocated objects. This can be

done by either assuming a strong from-space invariant, where the application

only ever sees the from-space and a safepoint is used to flip the spaces after

collection, or by using an extra heap fix-up phase that corrects all pointers.

But in Schism/cmr, fix-up is simplified by the use of sentinel blocks. When

all spines are copied, the only fix-up necessary is to traverse all sentinels and

flip their spine pointers to refer to to-space.

The semi-space collector runs in tandem with the CMR, and is implemented

as a number of helper functions, flipSpaces() to flip the to-space and from-space,

observeSentinel(s) to observe a sentinel, performCopying() to copy all objects, and fi-

nally sweepOldSpace() to zero-initialize the from-space. The collector calls flipSpaces()

at the beginning of collection. When marking, it calls observeSentinel(s) on each object

it encounters. This function will allocate a to-space spine as necessary and establish a

forwarding pointer from from-space to to-space. After sweeping is done, the collector

will call performCopying() to copy all spines and retarget all spine pointers in all sen-

tinels to to-space, and then sweepOldSpace() to clean up the now unused from-space

by zeroing it. The allocSpine(n) function is provided to the allocator to perform spine

allocations.

This collector maintains state similarly to SemiSpace. It uses bT , bF for alloca-

tion, and the sets HT and HF of memory locations in to-space and from-space. A

linked list of sentinels is maintained, with the head stored in sentinelsHead. The set of

addresses [min(HT ), bT ) corresponds to the set of memory locations used by allocated

spines. Free space is the set of addresses [bT , max(HT )]. Free space is always initial-

ized to 0, to ensure that if the collector encounters a spine before fragment pointer
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allocSpine(n) =

spineLen ← dn/fragsizee

atomic

if bT + spineLen + 2 > max(HT )

abort

l ← bT

bT ← bT + spineLen + 2

wr(l−2, l)

wr(l−1, n)

return l

Figure 4.9: The Schism/cmr spine allocation function.

flipSpaces() =

atomic

HT ,HF ← HF ,HT

bF ← bT

bT ← 0

Figure 4.10: The Schism/cmr space flipping function.
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observeSentinel(s) =

spineLen ← dlen(s)/fragsizee

if spineLen > fragsize − headsize − 1 and pslen(s) = 0

atomic

if bT + spineLen + 2 > max(HT )

abort

newSpine ← bT

bT ← bT + spineLen + 2

wr(newSpine−2, newSpine)

wr(newSpine−1, len(s))

wr(spine(s)−2, newSpine)

sentinelsHead ← next(s)

wr(s+1, sentinelsHead)

Figure 4.11: The Schism/cmr function to record a sentinel that has a spine allocated

in spine space.

have been installed, it will skip over those uninitialized pointers instead of shading

arbitrary memory. Spine allocation a simple O(1) function, shown in Figure 4.9.

At the beginning of collection, the spaces are flipped so that the old from-space

becomes the new to-space and vice-versa. Allocations will immediately commence

in the new to-space, and the new from-space (old to-space) will be frozen – no new

allocations will take place there, though the space may still be modified if spine

allocations are on-going. The flipSpaces() function is shown in Figure 4.10.

When a sentinel is found during marking, the collector will call observeSentinel(s).

If this sentinel refers to a spine allocated in the spine space, a new to-space copy

of the spine is allocated and linked to the from-space original. The sentinel is also



147

performCopying() =

while sentinelsHead 6= 0

cur ← sentinelsHead

sentinelsHead ← next(cur)

spineLen ← dlen(cur)/fragsizee

oldSpine ← spine(cur)

newSpine ← fwd(oldSpine)

foreach i in [0, spineLen−1]

fragment ← rd(oldSpine+i)

if fragment 6= 0

wr(newSpine+i, fragment)

wr(cur+3, newSpine)

Figure 4.12: The Schism/cmr spine copying function.

sweepOldSpace() =

foreach l in [min(HF ), bF−1]

wr(l, 0)

Figure 4.13: The Schism/cmr from-space clean-up.
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placed on the linked list. The next(s) field is reused for this purpose; this is safe

since observeSentinel(s) is called only after the sentinel is dequeued from the worklist.

Once it has been dequeued it will never be enqueued again during this collection, so

the next(s) pointer is available for reuse. After observeSentinel(s) completes, any on-

going spine initializations will start writing to both the from-space and to-space copy.

However, uses of the spine via location(o,i) will continue to read from the from-space.

The observeSentinel(s) function is shown in Figure 4.11.

After sweeping completes, the collector will call performCopying() to copy all spines.

This function is shown in Figure 4.12. It processes all entries in the sentinels linked

list that was constructed by the marking phase. For each sentinel, it locates the from-

and to-space spines, and copies each entry one at a time. The copying loop is designed

to be resilient against races with spine initialization. New spines start out containing

0 in each fragment pointer location. If the from-space contains 0, then the allocator

has not yet initialized this location in the spine, and so copying is neither necessary

nor correct; if the copier did copy the 0 value then it would risk overwriting a newly

installed fragment pointer in to-space. If the value is not 0 then it will never change

again, and so copying is both necessary and always correct; at worst, the copier will

rewrite the same value into to-space as what the allocator had written. Once copying

of a spine finishes, the sentinel is retargetted to point to the to-space spine.

The final phase of semi-space copying is sweepOldSpace(), shown in Figure 4.13.

This simply zero-initializes that region of from-space that had previously been pop-

ulated with spines, and ensures that once the spaces are flipped again on a future

collection, spines allocated in this new to-space will initially contain 0 at every frag-

ment pointer location.

4.3.4 Collector Thread

The integration of the semi-space collector into the CMR collector thread is shown

in Figure 4.14. Spaces are flipped before the collection begins. This is followed by a
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loop

flipSpaces()

ragged safepoint t in T nop

fM ← !fM

ragged safepoint t in T nop

phase ← 2

ragged safepoint t in T nop

phase ← 3 ; fA ← fM

ragged safepoint t in T nop

ragged safepoint t in T

foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

while W .head 6= 0

while W .head 6= 0

s ← dequeue(W )

shadeObject(s) ; observeSentinel(s)

foreach d in refs(s) mark(d, W )

ragged safepoint t in T

if quickstore foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

phase ← 4

sweepPagesAndLines()

sweepLargeObjects()

performCopying()

ragged safepoint t in T nop

sweepOldSpace()

phase ← 1

postSweep()

Figure 4.14: The Schism/cmr collector thread.
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ragged safepoint to ensure that all new allocations are operating over to-space. When

an object is encountered during the marking loop, observeSentinel(s) is called to ensure

that a new spine is allocated and that the sentinel is remembered in the sentinel

list. Sweeping does not begin until after the final ragged safepoint of marking; this

ragged safepoint also ensures that sweeping only starts after all application threads

acknowledge the presence of forwarding pointers in the from-space spines. Sweeping

concludes with a call to performCopying(), which copies the contents of the from-space

spines into the to-space spines. After copying finishes a ragged safepoint is used to

ensure that all threads have acknowledged that sentinels have been retargetted to to-

space. At this time it is safe to discard the from-space with a call to sweepOldSpace().

4.3.5 Page Layout Optimizations

CMR’s heap structure involves reserving a header in each page for free line and

page bits management. Page bits are used in the shadeBlock(base,len) function to

identify those regions of a page that are in use by shaded objects. Each bit represents

a single memory location. But in both Siebert/cmr and Schism/cmr, fragments

are either entirely free or entirely in use since all object sizes are rounded up to the

fragment size. This permits the page bits to be compacted, which makes the header

smaller and accelerates the sweep. The pageheadsize can be reduced to 8, rather than

32, assuming a 1024 location page size. The Appendix shows the optimized versions

of CMR’s page and line management functions in the case that all allocations are a

multiple of fragsize.
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4.3.6 Analysis of Fragmentation Tolerance

A garbage collector is fragmentation tolerant if there exists a function m(n) =

Θ(n) such that an allocation request Alloc(n,v) in a heap H containing objects O is

guaranteed to succeed if:

m(n) ≤ |H| −
∑
o∈O

m(len(o)) (4.1)

This section gives a definition of m(n) for Schism/cmr. Definitions for both the

upper and lower bounds are provided, since opportunistic contiguous allocation may

result in a smaller size. The analysis of an object’s memory usage begins by deriving

a base size, denoted B(n), for an object. This is then summed with the meta-data

overheads arising from the collector’s use of page tables, page headers, and spines.

The page-related overheads are denoted P (B(n)) and the spine-related overhead are

denoted S × (B(n) + P (B(n))). The total memory usage of an object is then:

m(n) = B(n) + P (B(n)) + S × (B(n) + P (B(n))) (4.2)

Base size

An object in Schism/cmr comprises a sentinel, a spine, and payload fragments.

For very small objects, the sentinel may contain the entire payload, or its spine.

Some objects will be allocated contiguously, which results in a smaller size. The up-

per bound is considered first, which occurs when opportunistic contiguous allocation

fails. Additionally, the base size B(n) does not include the size of spines allocated

in the spine space, since the spine space usage is accounted as part of S(B(n)). The

sentinel is a single fixed-size fragment that contains 4 locations for the header, and

the remaining locations that are used for the payload if the array is small. Otherwise,

there will be 0 or more fragments for storing the payload.

Bupper(n) =

 fragsize if n ≤ fragsize− headsize

fragsize + fragsize
⌈

n
fragsize

⌉
if n > fragsize− headsize

(4.3)
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Figure 4.15: Lower and upper base object sizes as a function of object length n

assuming fragsize = 8.

If opportunistic contiguous allocation succeeds, the base size is simply:

Blower(n) = fragsize×
⌈

headsize + n

fragsize

⌉
(4.4)

Assuming 8-location fragments, this simplifies to:

Bupper(n) =

 8 if n ≤ 4

8 + 8
⌈

n
8

⌉
if n > 4

(4.5)

Blower(n) = 8×
⌈

headsize + n

8

⌉
(4.6)

Figure 4.15 illustrates the behavior of lower and upper base object sizes for 8-

location fragments.

Page overhead

The CMR heap is a collection of pages that are contiguous in memory and separate

from the spine space. Each page may multiple objects, but no contiguous object ever

straddles multiple pages. Page state is maintained in a page table and in page headers.

The page table has a 4-bit state per page. Page headers are pageheadsize long, leaving
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pagesize−pageheadsize bytes for data in each page. Page overhead is computed such

that they may be fractional: for example if using a page size of 1024 on a 32-bit system

with a page header size of 8, an object 10 locations long will use 10
1016

th of the page

header and 10
1016

th of the 4-bit page table field. For this purpose the p(B(n)) helper

function is introduced, which gives the number of pages (which may be fractional)

used by an object:

p(B(n)) =
B(n)

pagesize− pageheadsize
(4.7)

This allows a formulation of the total page overhead per object:

P (B(n)) = pagesize p(B(n)) +
4

locationbits
p(B(n))−B(n) (4.8)

Assuming a 1024-location page size, an 8-location page header, and 32 bits in each

location, this simplifies to:

p(B(n)) =
B(n)

1016
(4.9)

P (B(n)) = 1024p(B(n)) +
1

8
p(B(n))−B(n) (4.10)

=
65

8128
B(n) (4.11)

' 0.007997B(n) (4.12)

Provisioning spine space

Spines are allocated in the separate spine space if opportunistic contiguous alloca-

tion fails. The spine space must maintain a copy reserve due to the use of SemiSpace-

style copying. To maintain fragmentation tolerance, the spine space must be large

enough that any allocation that succeeds in the CMR space also succeeds in the spine

space. This would be simple if the spine size was always uniformly proportioned to

the amount of memory used by CMR, Bupper(n) + P (Bupper(n)). Unfortunately

this is not the case. Bupper(n) is not a closed form function since small objects will

only have one fragment. The spine size includes a 2-location header. Thus, some

objects will use proportionately more spine space than CMR space. This means
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that fragmentation tolerance is only ensured if the spine space is big enough to sat-

isfy adversarial object allocations, which always require the largest amount of spine

space.

Spines are only allocated for objects that are too large to exist entirely in the

sentinel, and too large to have the spine inlined in the sentinel. Let nspine be the

smallest length that results in spine allocation:2

nspine = max

 fragsize− headsize,

(fragsize− headsize− 1)× fragsize

+ 1 (4.13)

The spine size for an object of length n is:

s(n) =

 0 if n < nspine

2×
(
2 +

⌈
n

fragsize

⌉)
if n ≥ nspine

(4.14)

The 2× factor is due to the need to account for a copy reserve. The spine space

overhead S corresponds to the size of the spine space relative to the size of the

CMR space. This must be picked so that it is the maximum relative spine space

usage:

S = max
n≥0

(
s(n)

Bupper(n) + P (Bupper(n))

)
(4.15)

This can be conservatively simplified by removing P (Bupper(n)) because it is

always small and non-negative.

S = max
n≥0

(
s(n)

Bupper(n)

)
(4.16)

Values of n that result in s(n) = 0 can be ignored. This allows S to be simplified

further as follows:

S = max
n≥nspine

(
s(n)

Bupper(n)

)
(4.17)

= max
n≥nspine

 2×
(
2 +

⌈
n

fragsize

⌉)
fragsize + fragsize

⌈
n

fragsize

⌉
 (4.18)

2As a special case, nspine = 0 if fragsize = 4, since even a zero-length object will require a spine to
store the true length.
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For simplicity, let:

f =

⌈
n

fragsize

⌉
(4.19)

So that it is possible to write:

S = max
n≥nspine

(
2× (2 + f)

fragsize + fragsize× f

)
(4.20)

= max
n≥nspine

(
2

fragsize

2 + f

1 + f

)
(4.21)

Finding the maximum requires considering three cases:

1. n = nspine.

2. The limit as f → inf.

3. Cases where the expression being maximized has a zero derivative with respect

to f .

Consider the derivative:

∂

∂f

(
2

fragsize

2 + f

1 + f

)
=

2

fragsize

(
1

(1 + f)
− (2 + f)

(1 + f)2

)
(4.22)

= − 2

fragsize

1

(1 + f)2
(4.23)

Luckily, this derivative never crosses zero and is always negative for positive values

of fragsize. Since f is just a monotonically non-decreasing function of n, this means

that largest amount of spine space usage relative to CMR space usage occurs at the

smallest possible value of n that leads to spine allocation, or nspine. This allows the

simplification:

S =
2×

(
2 +

⌈
nspine

fragsize

⌉)
fragsize + fragsize

⌈
nspine

fragsize

⌉ (4.24)

This expression depends only on fragsize, since nspine is just a function of fragsize. In

the case of fragsize = 8, nspine evaluates to 25, which allows the following simplification:

S =
3

10
(4.25)
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Figure 4.16: Spine space overhead S as a function of the fragment size fragsize.

This means that for the most common choice of fragment size, Schism/cmr will

only require 3
13

of the heap to be used for the spine space and 10
13

of the heap to be

used for the CMR space. A plot of the spine space overhead S as a function of

arbitrary fragsize is shown in Figure 4.16. This helps to illustrate the wisdom of using

fragsize = 8. The nearest reasonable values are fragsize = 4 and 16, since any value that

is not a power of two would result in expensive division and remainder operations in

the location(o,i) function shown in Figure 4.6. But with fragsize = 4, the spine space

overhead jumps to S = 1; i.e. half of the heap must be reserved for spines. Switching

from 8-location to 16-location fragments will reduce S from 0.3 to 0.135, which will

shrink total (spine plus CMR) memory usage by 15%, if it is assumed that the increase

in fragment size has no effect on CMR space usage. But fragments of 16 locations

or greater will make small object allocations expensive due to the round-up that

occurs when computing B(n). Siebert observed that most objects are small; hence

larger fragment sizes will lead to prohibitive round-up overhead (otherwise known as

internal fragmentation). [42] In practice, the 15% shrink due to smaller spines is likely

to be outweighed by the much larger increase in CMR space usage due to internal
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fragmentation. Further increasing the fragment size will lead to diminishing returns

in spine space size, but even greater penalties due to internal fragmentation. Hence,

a fragment size of 8 appears to be an optimal choice for Schism/cmr.

Total object size

The total object size is the sum of B(n) and the two sources of overheads: page

allocation overhead and spine space overhead:

m(n) = B(n) + P (B(n)) + S × (B(n) + P (B(n))) (4.26)

Schism/cmr defaults to a fragment size of 8, a 1024-location page size, and an

8-location page header. Schism/cmr’s expected target systems are embedded; as

of this writing embedded systems are predominantly 32-bit. This allows m(n) to be

simplified to:

m(n) =
106509

81280
B(n) (4.27)

' 1.3104B(n) (4.28)

Discussion

The total object size m(n) can be used by the application developer to compute

exactly how much memory will be used by each allocation. This allows the heap

size |H| to be picked so that it is the sum of the sizes m(n) of all objects that the

programmer expects to be live simultaneously. Objects in Schism/cmr do not use

a contiguous physical region of the heap H. The total size includes two sources of

overheads: page overheads and a spine. For every B(n) locations used for object

fragments, some (potentially fractional) number of locations P (B(n)) will be used in

two separate parts of the heap: page headers and the page table, which sits on the side.

Additionally, some virtual number of locations S × (B(n) + P (B(n))) will be used.

In common cases, objects do not have exactly n = nspine and so a strictly smaller

number of physical locations in spine space will be allocated. But Schism/cmr
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always virtually reserves S× (B(n) + P (B(n))) locations in the spine space for every

allocation even if that allocation used fewer physical locations in the spine space. This

means that the application developer never has to track physical spine space usage.

When an application is configured with a heap size |H|, S
1+S
|H| of the heap is given

to the spine space and 1
1+S
|H| is given to the CMR, which then gets partitioned into

a page table and a space to store the pages P . Each allocation is made to appear

to use both spaces in equal proportion, and the formula m(n) informs the developer

about the total amount of memory used in H.

While these formulas show that Schism/cmr is fragmentation tolerant and has a

reasonable choice of default fragment size (fragsize = 8), they also show that the object

structure has some room for improvement. Sentinels of objects with an out-of-line

spine contain fragsize − headsize spare locations which are unused. If the last fragment

of the object contains no more than fragsize − headsize elements, then that fragment

could be dropped and the last pointer of the spine could instead refer to the sentinel.

Another optimization is to restructure the placement of fwd(spine(s)) and trlen(spine(s)).

Placing them in the spine makes s(n) affine rather than linear; this is the reason for

the maximal spine space usage S occuring for n = nspine. If they were instead placed

in the sentinel then the value of S would decrease without any need to increase CMR

space usage since the sentinel already has spare locations. As compelling as these

optimizations are, they have not been implemented in Schism/cmr, and so are not

considered further in this dissertation.

Proof of fragmentation tolerance

Fragmentation tolerance requires m(n) = Θ(n), and that every memory allocation

that occurs when m(n) space is available succeeds. In Schism/cmr, m(n) depends

on a number of constants selected a priori, such as fragsize, pagesize, pageheadsize, and

headersize. Once these constants are selected, B(n) is a step function with linear upper

and lower bounds. P (B(n)) is linear in B(n), and the factor S is a constant. Thus,
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m(n) is lower- and upper-bounded by linear functions, which satisfies the requirement

that m(n) = Θ(n). The second requirement, that every request for an object of size

n succeeds when there is m(n) space available, holds because:

1. Spine space allocation always succeeds if CMR allocation would have suc-

ceeded. This is the result of picking S adversarialy, and the spine space using

SemiSpace-style copying to eliminate fragmentation.

2. CMR allocation for a fragment always succeeds if there are any lines or pages

available anywhere in the heap. This is because every free space location will

be in the form of either entirely free pages, or free lines that are at least as

big as a fragment. Consequently, CMR allocation always succeeds if there is

B(n) + P (B(n)) free space available.

4.3.7 Discussion

Schism/cmr provides fragmentation tolerant concurrent garbage collection with

strong real-time guarantees. The application is never paused. Heap accesses complete

in O(1) time and are always wait-free, regardless of concurrent application or collec-

tor activity. Furthermore, Schism/cmr is highly space-efficient. Under the default

configuration of fragsize = 8, the only overheads are due to rounding up to the near-

est 8 locations, and the 1.3104 factor required for the spine space reserve and page

table overhead. Consider the space usage of a collector like SemiSpace, Baker, or

ChengBlelloch. In those collectors, a 2× overhead is required to enable object

copying. Schism/cmr reduces this overhead because only spines are copied, and

spines are 8× smaller than the objects themselves. The remainder of this chapter

considers an implementation of Schism/cmr in a high-performance Java virtual ma-

chine, and compares it to other well-known real-time garbage collection systems such

as IBM WebSphere SRT and Sun JavaRTS.
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4.4 Implementing Schism in the Fiji VM Java Virtual Machine

Schism/cmr is implemented in the Fiji VM, the same platform as was used for

testing the CMR in Chapter 2. Only minor modifications were made to support

the Java object model as opposed to the simpler Alloc, Store, Load model of this

dissertation. Additional changes were made to allow for experimenting with a wider

range of predictability modes. This section discusses the slight differences in Fiji’s

Schism/cmr.

4.4.1 Java Object Model

Java supports both plain objects, which have a fixed size and are always accessed

at fixed offsets, and arrays, which have variable size and may be accessed at variable

offsets. Siebert’s fragmented allocation does not use tries for plain objects; instead,

it uses linked lists. [42] The sentinel contains the object header and a pointer to the

next fragment; that fragment then contains just object fields and possibly another

pointer to another fragment. This turns out to be optimal since plain objects tend to

be small; Siebert argues that they are smaller than 64 bytes, or two fragments, except

in rare cases. [42]. The Fiji version of Schism/cmr has been modified to include this

optimization.

Fiji VM operates over a memory composed of bytes, not pointer-width locations.

It uses a fragment size of 32 bytes, and by default runs on 32-bit platforms. 64-bit

support is included (in which case fragments are 64 bytes) but is not considered in

this dissertation. The structure of objects is shown in Figure 4.17. The first object

fragment has three header words: a fragmentation header that either points to the

next fragment of the object (Figure 4.17(a)) or to the arraylet spine (Figure 4.17(c)

and 4.17(d)), and a GC word used for storing both flag(s) and next(s) and a type

header that holds both type and locking information. Arrays have an additional

pseudo-length header holding either the actual array length (for contiguous arrays)

or zero. Array accesses first perform an array bounds check on the pseudo-length;



161

g
c t payload payload

(a) A 2-fragment object. The first fragment has

three header words: a fragmentation header, a GC

header, and a type header.

g
c t n payload

(b) An array with ≤ 16-byte payload. The sen-

tinel fragment has four header words: fragmenta-

tion header, GC header, type header, and pseudo-

length. The payload is inlined.

g
c t spine0 n payload

(c) An array with a 17 to 96-byte payload. The sen-

tinel fragment has five header words: fragmentation

header, GC header, type header, pseudo-length 0

to indicate fragmentation, and the length. The re-

mainder of the sentinel contains an inlined spine.

spine

g
c t 0 payload

nf

(d) An array with a payload > 96 bytes. The sen-

tinel has four header words: fragmentation header,

GC header, type header, and pseudo-length. The

remainder of the sentinel is unused. The spine has

a two-word header: the length and a forwarding

pointer at negative offsets.

Figure 4.17: Fragmented allocation in Fiji Schism/cmr.
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it will always fail for fragmented arrays causing the slow path to be taken. For

normal objects, subsequent fragments only have a fragmentation header; the rest of

the space is devoted to the payload. For arrays, the first fragment (the sentinel) may

point to a spine or may have the entire array inlined (if it is small enough to fit in the

remaining 16 bytes or if opportunistic contiguous array allocation succeeded). The

inline payload case is shown in Figure 4.17(b). The spine itself may live inside the

sentinel if it can fit in 16 bytes. In that case the spine uses one word for the length

and the remaining 12 bytes for pointers to payload fragments (Figure 4.17(c)). If

the array payload requires more than three fragments (i.e., is more than 96 bytes)

then the spine will be allocated in the spine space (Figure 4.17(d)). In this case the

sentinel has just four words in it and the remaining 16 bytes are wasted to achieve

32-byte alignment. An out-of-line spine allocated in the spine space requires a two

word header: a forwarding pointer to support replication and the length.

4.4.2 Predictability

Contiguous objects lead to better performance than fragmented ones. Of course,

Schism/cmr is designed to have good performance even if all objects are fragmented

— but even in a real-time system an opportunistic throughput boost can be a good

thing. Thus, Fiji Schism/cmr has multiple “predictability levels” which vary the

heuristics for opportunistic contiguous allocation.

Predictability level C: optimize for throughput. The collector tries to allocate

objects contiguously, reverting to fragmented allocation if the former fails. This

extends the contiguous allocation of Schism/cmr by also attempting to allocate

objects larger than a page contiguously, if a large contiguous region of free pages

can be found quickly. Field access barriers do not exploit contiguity; they always

perform n hops to get to the nth object fragment. Thus, contiguity of plain objects is

used solely for accelerating allocation and locality. Array access barriers are branch-
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predicted in favor of contiguous access, but fragmented access is still inlined to ensure

good worst-case performance.

Predictability level B1: reduce throughput optimizations. Level B1 is like

level C, except that array access barriers are not branch-predicted. This results in

slightly better worst-case performance, but slightly worse average-case performance.

Predictability level B2: reduce contiguous allocations. Level B2 is like level

C, except that large object allocations are always fragmented. Opportunistic con-

tiguous array allocation still occurs for arrays that can fit entirely inside a page.

Predictability level A: optimize for predictability. Arrays are always allo-

cated in 32-byte fragments. An array will only be contiguous if its payload is 16

bytes or smaller. Objects are allocated opportunistically contiguous as in level C.

Array access barriers are branch-predicted in favor of fragmented access.

Predictability levels AW, B1W, B2W, and CW: simulate worst-case. These

are the worst-case execution time modes. They behave like their respective non-worst-

case variants, except that all fast paths are poisoned. They execute but always fail

causing the mutator to exercise the out of line slow-paths. These levels poison array

accesses, GC write barriers, and allocations. This helps users estimate how slowly the

program would run if all of the collector’s heuristics fail. Note however that levels

B1W and CW do not trigger worst-case space usage as some contiguous arrays may

require more memory than fragmented ones.

4.4.3 Compiler Optimizations

Schism/cmr requires sophisticated Store and Load transformations. In Fiji VM,

these transformations are always inlined, except for the slow-path case of mark(o),

where the object o is not marked; this case is handled by an out-of-line procedure
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call. Inserting additional branching and loads on each heap access results in a 10%

increase in code size on average, reduced application throughput, and increased com-

piler memory usage and compile times. Fiji VM employs redundant code elimination

(RCE) and a deoptimization mode to mitigate these effects.

Redundant code elimination. Fiji VM generates C code. Production C compil-

ers typically have excellent facilities for removing redundant code, such as repeated

loads to the same memory location, or loads from locations that were just stored to.

But Schism/cmr’s heap access transformations interfere with the C compiler’s abil-

ity to detect redundant loads. For this reason, a global value numbering (GVN) [45]

based redundant code elimination pass was added to Fiji VM specifically to improve

the performance of Schism/cmr. This pass uses GVN to identify identical values,

and then performs a load elimination pass to remove identical loads. Two array loads

are identical if the GVN pass proves that both the object and the index are identical.

Two object field loads are identical if the GVN pass proves that they are loading from

the same object, and the field being loaded from is the same.

Deoptimization. Some large methods cause the compiler to use prohibitive amounts

of memory when inserting Schism/cmr’s transformations. These methods are almost

always initializers: they run once to initialize some large array or large set of fields,

and then never run again. Hence, using inlining for heap accesses in these methods is

not profitable. Fiji VM detects when a method is growing too large to fit in memory

due to Schism/cmr’s transformations. When this occurs, compilation is rolled back

and all heap accesses are replaced with out-of-line procedure calls. This simplifies the

amount of work the compiler has to do, and the amount of memory it has to use, to

compile the method.
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4.4.4 Space bounds in Fiji VM

Space bounds in the Fiji VM version of Schism/cmr require accounting for ob-

jects with different field types, and arrays that may have different element types. Fiji

VM always uses a 32-byte fragment size on 32-bit systems, and defaults to a page

size of 4096 bytes. This section gives details of the formulation of space bounds in

Fiji VM, using bytes, rather than pointer-width locations, as the primary unit.

Plain Objects

Non-array objects in Java consist of an ordered collection of fields. The compiler

guarantees deterministic layout of fields allowing the total object size to be derived as

follows. A three word header (12 bytes) is prepended to every object.3 Fields are laid

out in program order starting with Object and walking down the extends chain. They

are aligned in memory according to their size (for example an 8-byte field will always

lie on an 8-byte boundary). The size of an n-field object can thus be obtained by the

following recurrence relation, in which b0 denotes the header size and bi denotes the

size after adding the ith field, whose size is denoted by fi for 1 ≤ i ≤ n:

b0 = 12 (4.29)

bi = align(bi−1, fi) + fi (4.30)

3The object header comprises: a fragmentation word, used for linking the various 32-byte fragments
together (accounting for this header is slightly tricky as it repeats every 32 bytes); a GC word used
for marking by CMR; and a type word used to store both a Java lock and a pointer to the object’s
type.
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The align function accounts for byte-boundary padding and the fragmentation header

inserted every 32 bytes to link to the next fragment. It can be computed as the

recurrence relation ak(bi−1, fi) that is executed until fixpoint:

a0 = bi−1 (4.31)

ak =


ak−1 + 4 if ak−1 mod 32 = 0

ak−1 + 1 if ak−1 mod fi 6= 0

ak−1 otherwise

(4.32)

A fixpoint is guaranteed provided that fi is a power of two and fi ≤ 16; in Java we

are guaranteed that fi ∈ {1, 2, 4, 8}. Given n fields, we define the base size B for a

plain object as follows:

B = 32

⌈
bn

32

⌉
(4.33)

Arrays

Arrays comprise a sentinel, a spine, and the payload fragments. For very small

arrays, the sentinel may contain the entire array payload, or its spine. At level C,

some arrays will be allocated contiguously, which results in a smaller size. We ignore

optimization in deriving the worst case. Additionally, the spine size is not included

since it is part of S. The sentinel is a single 32-byte fragment which contains 16 bytes

of header and pseudo-length meta-data.4 The remaining 16 bytes may be used for the

payload if the array is small. Otherwise, there will be 0 or more 32-byte fragments

for storing the payload. Thus the base size B of an array is as follows. The variable

l is used to denote the array length and e to denote the element size in bytes:

B =

 32 if l × e ≤ 16

32 + 32
⌈

l×e
32

⌉
if l × e > 16

(4.34)

For arrays B is precise at level A and B2, but an upper bound at level C and B1.

4The sentinel header consists of a fragmentation word, a GC word and type word as before. The
fragmentation word is used for linking to the spine. The pseudo-length is used to determine the
length of the array as well as to indicate if the array is contiguous or fragmented. If the array is
fragmented, this field will be 0 and the “true” array length will be stored in the spine.
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Page overhead

Page overheads in Fiji VM only require special treatment at levels C and B1.

At levels C and B1, contiguous objects are allowed, in some cases, to cross page

boundaries. Each page is then devoted entirely to that one object and even if there

is free space in the page it cannot be used so long as that object is alive. In that

case the first page requires 32 bytes for the CMR’s large object header and any free

space on the last page is wasted until the object dies. Thus the total page overhead

considering a contiguous large object allocation is:

Plarge(B) =

[
4096

⌈
B + 32

4096

⌉(
1 +

0.5

4096

)]
−B (4.35)

This is only needed for B > 4064 on levels C and B1. In fact, depending on the

object size, sometimes P (B) can be larger than Plarge(B), so to account for the worst

case the maximum is taken.

Spine space

The spine space overhead S is 3
10

, since the 32-byte fragment size used in Fiji VM

corresponds to 8 locations.

Total object size

The total object size is:

M = B + P (B) + S × (B + P (B)) (4.36)

At level A, P (B) has a simple closed form, so this simplifies to:

M ' 1.3104B (4.37)

This formulation allows the programmer to compute exactly what heap size to

pick given an analysis of the number and type of objects known to be live at the high
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Figure 4.18: Analytical Overheads. Memory overhead of Fiji Schism/cmr for data

of varying size compared to theoretical mark-and-compact and semi-space collectors

(relative to TMC).
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watermark. Simply summing the sizes M and rounding up to the nearest page size

yields the heap size necessary to never run out of memory. Even if the heap structure

changes and the programmer suddenly decides to allocate arrays instead of objects

or vice versa, it is guaranteed that an out-of-memory condition will not be reached

provided that the total sizes of objects are less than or equal to the heap size.

This gives us the following formula for computing the size in bytes of a plain object

with n 4-byte fields:

1.3104× 32 d(2 + n)/7e (4.38)

And for an array with a p-byte payload in level A, the array size in bytes can be

computed as:

if p ≤ 16 then 1.3104× 32 else 1.3104× (32 + 32 dp/32e) (4.39)

Analytical Comparison. It is possible to analytically compare Schism/cmr’s

guaranteed worst-case space usage to that of two theoretical baseline collectors: TMC,

a three-phase stop-the-world mark-compact framework that requires no external meta-

data, packs all object fields ignoring alignment, uses two header words for objects and

three for arrays, and maintains 4-byte alignment for objects;5 and TSS, a stop-the-

world semi-space framework that uses an identical object model to TMC but requires

twice as much space due to its copy reserve. The TMC and TSS object layouts are

similar to what is found in Jikes RVM [46] and Sun HotSpot [47]. Thus, when meta-

data overheads are factored in we expect those systems to use slightly more memory

than TMC but considerably less than TSS. The exact overheads of objects and arrays

are shown in Figure 4.18; the plot is relative to the TMC size and is specific to level

A. For arrays, the payload size is set to range between 1 and 1000 bytes. For objects,

the number of fields ranges between 1 and 100. The graphs show that Schism/cmr’s

overheads converge to roughly 1.4× TMC for large arrays, and 1.5× for large objects.

5For comparison, the space requirements of TMC for an object with n 4-byte fields is 8 + 4n, and
for an array with a p-byte payload TMC requires 12 + 4 dp/4e bytes.
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The overheads peak at roughly 2.6× for small arrays and 3.5× for objects that have

only one field.

4.4.5 Integration with other Fiji VM features

Like CMR, Fiji Schism/cmr includes support for finalization, monitor locking,

machine code garbage collection, immortal objects, stack-allocated memory, scoped

memory, and flexible collector scheduling. Most of these features do not require

changes to support Schism/cmr’s more sophisticated object structure. This section

discusses changes to finalization, monitor locking, stack- and scope-allocated memory,

and large object handling.

Finalization

Java allows classes to declare a finalize() method, which is to be called after an

object is found to be no longer live but before it is swept. Schism/cmr supports this

by allocating a special destructor object for every Java object that has a non-empty

finalize() method. Destructors are allocated in the heap, but do not have ordinary

GC headers. Each destructor contains two fields: a link to the Java object and a

next pointer. In Schism/cmr, destructor size is rounded up to 32 bytes to ensure

that once they are deleted, their memory can be reused for new object fragment

allocations. Because very few objects are finalizable (i.e. have a non-empty finalizer),

this extra overhead of destructors does not have a significant effect on memory usage.

Monitor locking

Java allows each object to have a lock. The lock pointer is installed in the type

field of the object header, and may point to a heap-allocated Monitor structure. The

Monitor structure does not have normal GC headers. Luckily, the Monitor structure
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is less than 32 bytes long. In Schism/cmr, it is always rounded up to 32 bytes to

ensure that its allocation does not break Schism/cmr’s fragmentation tolerance.

Stack-allocated and scoped memory

Fiji VM allows for objects to be allocated on the stack and in special scoped

memory [26] areas. Scope- and stack-allocated objects are always contiguous. Thus,

if the application ever requires an array to be allocated contiguously, for example

because a raw pointer will be passed to foreign code, then stack allocation is the

preferred mechanism for ensuring that this happens. Contiguous allocation of stack

objects is guaranteed at all predictability levels.

Large object optimizations

Fiji Schism/cmr always disables CMR’s large object optimizations. At levels

A and B2, large object allocations are always fragmented. At levels C and B1,

large objects are always allocated inside the CMR heap H. This does not create a

long-term fragmentation hazard, since Schism/cmr can always revert to fragmented

allocation whenever necessary.

4.5 Qualitative Comparison to other Real Time Garbage Collectors

Fiji Schism/cmr provides a complete real-time garbage collector with fragmen-

tation tolerance, wait-free O(1) heap accesses, O(n) allocations, and concurrency.

But it is not the only real-time garbage collector available for Java. Commercially

available virtual machines with real-time garbage collectors include the IBM Web-

Sphere Realtime [48,49], Sun Java RTS [50], Aicas Jamaica [44], Aonix’s PERC, and

the Azul JVM. There are also a number of academic RTGC projects including the

original Jikes RVM-based uniprocessor version of Metronome [15], a suite of RTGCs

for .NET [35,36], Minuteman [14], Sapphire [51], and a parallel real-time collector for
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ML [21]. RTGCs differ in two main regards: first, how collection work is scheduled,

and second, what object model is used to deal with fragmentation.

4.5.1 Scheduling Strategies

RTGCs use two different scheduling strategies: either the user chooses the collec-

tor’s schedule with time-based or slack-based scheduling, or it automatically adapts

to the allocation rate with work-based scheduling. Schism/cmr, WebSphere SRT,

and Java RTS use the former while Jamaica uses the latter.

Time-based and slack-based scheduling. Time-based scheduling, pioneered in

Bacon et al [15], runs the collector periodically for short tightly-bounded increments.

This yields uniform mutator utilization and is easy to understand and configure.

However, it is not ideal for low-latency hard real-time tasks — for such tasks it is

better to avoid all collector interference. This is achieved by slack-based scheduling

where the collector runs at a fixed priority that is lower than that of real-time tasks,

which can always preempt the collector. Slack-based scheduling by itself will not

work in every application: if real-time tasks run for too long the collector will starve.

Neither scheme is ideal, so most JVMs support both approaches. Websphere includes

an innovative scheduling scheme [48], which invokes the time-based collector only

when the slack-based one is starved. Java RTS and Fiji Schism/cmr are slack-based

by default but provide APIs for controlling the collector thread directly, which allows

for time-based scheduling to be enabled if needed.

These schemes may fail if the mutator outpaces the collector by allocating too

much too quickly. In this case the RTGC may have to suspend allocating threads.

Ensuring that this does not happen is up to the developer, and requires computing

the worst-case (i.e., highest) allocation rate, worst-case (i.e., lowest) collection rate,

and object lifetimes. Given this information it is possible to determine the optimal

heap size and mutator utilization target (for time-based collectors) or heap size and

thread priority (for slack-based collectors) [14].
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Work-based scheduling. A work-based collector will perform an increment of

collection work on every allocation [44]. This scheme can be made to provide linear-

time allocation, though with a larger constant factor than other schemes. Thus,

work-based scheduling punishes threads that allocate a lot but rewards those that

allocate little, and can be thought of as precisely matching the collection rate to the

allocation rate. The main advantage of work-based scheduling is that it is easier to

configure the collector: only a heap size needs to be picked. The collector can then

perform exactly enough work on each allocation to ensure that a full collection cycle

completes before memory is exhausted. However, this scheme requires that collector

work can be uniformly partitioned into short bursts, and that these bursts can be

efficiently distributed among all threads in the system.

Concurrent collection. A concurrent collector that never offloads collector work

to application threads can be used in a real-time environment without any modi-

fications, provided that spare CPUs are available. This is the primary mechanism

used in the Azul JVM [11]. The other RTGCs all support concurrent scheduling and

will use that as their primary scheduling facility if unused CPU cores are available.

As with time-based scheduling, a concurrent schedule requires knowing the collection

rate, allocation rate, and object lifetimes, as well as a schedulability test, to choose a

configuration that does not result in the collector being outpaced.

4.5.2 Object Model and Fragmentation

Except for Azul, all other real-time garbage collectors may fragment objects. Web-

Sphere SRT fragments large arrays using arraylets. Java RTS and Jamaica may

fragment any object; non-array objects may become linked lists and arrays become

tries. The original Metronome [15] used on-demand defragmentation in addition to

arraylets to handle fragmentation.

Even without concurrent copying, WebSphere SRT will tend to perform well for

most programs thanks to its use of segregated free-list allocation and arraylets for
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large arrays — however, it is not completely fragmentation-tolerant and thus cannot

bound space usage as aggressively as Schism/cmr. Like Schism/cmr, Jamaica

and Java RTS are fragmentation-tolerant but have a worst-case array access cost of

O(log(H)). Azul copies objects concurrently and achieves complete fragmentation

tolerance; it can do so efficiently thanks to specialized hardware. Concurrent object

copying requires a copy reserve. Schism/cmr needs only a small copy reserve but

has large (though predictable) per-object overheads, while Azul may in the worst case

need a 100% copy reserve but has extremely compact objects (it is the only JVM that

is known to use one-word headers). Overall, Azul should be more space-efficient than

Schism/cmr for small objects and slightly less space-efficient for large ones. It is

the only RTGC that has demonstrated scalability to hundreds of cores.

There has been extensive work in the literature on real-time garbage collection.

The ChengBlelloch [21] collector was one of the first to offer hard real-time bounds

on multi-processors. Schism/cmr’s use of replication is largely inspired from that

work’s emphasis on immutability. One way to view Schism/cmr is that it achieves

immutability in Java by “boxing” the payload and storing it in a non-moving space.

Sapphire [51] is another attempt to bring replication to Java, though at the cost

of some object access coherence. Unlike Schism/cmr, both Cheng-Blelloch and

Sapphire may have to resort to locking for some object accesses if both coherence

and mutability are required. Minuteman [14] is an open-source uniprocessor imple-

mentation of the Metronome segregated free-list mark-sweep collector complete with

on-demand defragmentation. It can be made to use either pure time-based or pure

slack-based scheduling allowing the two styles to be compared directly. Stopless,

Chicken, and Clover provide some of the same guarantees as Schism/cmr, but

with higher costs and trade-offs.
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Real-time Java Virtual Machines:

WebSphere

SRT

-Xgcpolicy:metronome (build 2.5, J2RE 1.6.0 IBM J9 2.5 Linux

x86-32 jvmxi3260srt-20081016 24573 (JIT and AOT enabled))

Java RTS Java 2 Runtime Environment, Standard Edition (build

1.5.0 16 Java-RTS-2.1 fcs-b11 RTSJ-1.0.2) Java Real-Time System

HotSpot Client (build 1.5.0 16-b11, mixed mode)

Fiji VM 0.0.3-r1206f3ecc7c2

Desktop Java Virtual Machines:

IBM J9 IBM J9 (build 2.4, J2RE 1.6.0 IBM J9 2.4 Linux x86-32 jvmxi3260-

20080816 22093 (JIT and AOT enabled)

Sun JDK Java SE Runtime Environment (build 1.6.0 12-b04) Java HotSpot

Server (build 11.2-b01, mixed mode)
All JVMs were run with the options “-Xmx50M, -Xms50M” unless otherwise indicated.

Platforms:

Sharpay Intel Zeon CPU X5460, 3.16Ghz, 8-core, 8GB of RAM. Ubuntu 7.10

Linux kernel 2.6.22-14-server.

LEON3 Gaisler GR-XC3S-1500 / Xilinx Spartan3-1500 FPGA flashed with a

LEON3 configuration running at 40Mhz, 8MB flash PROM and 64MB

of PC133 SDRAM split into two 32MB banks. RTEMS 4.9.2 as the

operating system.

Table 4.1: Experimental Setup.

4.6 Evaluation

This section aims to demonstrate that Fiji Schism/cmr can handle fragmentation

(Section 4.6.1), has competitive throughput (Section 4.6.2), delivers on predictability

(Section 4.6.3), and is able to scale (Section 4.6.4). Section 4.6.5 shows the complete

throughput measurements for all Fiji VM collectors and all Schism/cmr configura-
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tions. To demonstrate these properties in a convincing manner, a number of bench-

mark programs, architectures and operating systems, and Java implementations have

been selected. This broad range of experiment yields the most thorough comparison

of real-time Java virtual machines to date.

The experimental setup is summarized in Table 4.1. Three real-time virtual ma-

chine configurations are evaluated: IBM WebSphere SRT, Sun Java RTS, and Fiji

VM. WebSphere SRT is IBM’s soft real-time product based on the latest variant of

the Metronome. The hard real-time version of WebSphere (WRT) adds support for

scoped memory and is usually substantially slower than SRT. Java RTS is a produc-

tion real-time JVM with a memory management strategy that bears some similarities

to Fiji VM. It uses the HotSpot client compiler. For Fiji VM, four configurations are

used: CMR, the base concurrent mark-region algorithm; and three predictability lev-

els of Schism/cmr (C=highest throughput, A=most predictable, CW=worst-case).

For the purpose of establishing a baseline on throughput, two JVMs that are opti-

mized for throughput rather than for predictability are also evaluated. These are

IBM’s J9 and Sun’s JDK 1.6 (HotSpot Server).

Two platforms were selected. The first (Sharpay) is a powerful server machine

that we use to explore the throughput of Schism/cmr on a modern multi-core archi-

tecture. The second platform is a LEON3 with the RTEMS hard-real-time operating

system. This single-core platform is more representative of current embedded sys-

tems. In fact, it was selected because it is used by NASA and the European Space

Agency in aerospace applications.

4.6.1 Fragmentation

A synthetic benchmark (Fragger) is used to evaluate the ability of various GCs

to deal with fragmentation. Fragger maximizes fragmentation by allocating small

arrays until memory is exhausted, then freeing every other array. Fragger then tries

to allocate as many large arrays as possible. The benchmark is run three times for
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four sizes of arrays (small arrays range between 200 bytes and 88KB, large from 600

to 168KB). GCs that are able to deal with fragmentation, either through relocation

or fragmented allocation, can allocate all of the large arrays.

Table 4.2 reports the number of arrays successfully allocated and the approximate

free memory utilization. Approximate free memory utilization is a measure of frag-

mentation tolerance; higher numbers are better. This column does not account for

object layout or any meta-data overheads; thus getting exactly 100% is unlikely. As

CMR is non-compacting, it will not be able to handle fragmentation at all. At the

opposite end of the spectrum JDK behaves well as it has a GC that is free to stop

the world and relocate objects at will. The different predictability levels of Schis-

m/cmr perfectly handle fragmentation. Level C has slightly fewer space overheads

due to its ability to allocate contiguously in some cases. Java RTS is close to Schis-

m/cmr while WebSphere SRT performs poorly except for large arrays, for which it

is able to use arraylets.

Table 4.3 compares the analytical memory usage model of Schism/cmr level A

from Section 4.4.4 to the observed values. The numbers match up exactly, confirming

the tightness of the space bounds. This comparison further illustrates the effect shown

in Figure 4.18: large arrays have lower per-element overheads than smaller ones; this

is the reason why switching from a 200 byte payload to a 600 byte one results in 120%

utilization.

Figure 4.19 shows the average access time of random array elements. The graph

has solid lines for accesses before fragmentation occurs and dashed lines for accesses

after allocating in fragmented memory. This is an indication of execution time costs

incurred by fragmentation. The JDK, which never fragments objects but can defrag-

ment the heap through stop-the-world object copying, has consistently faster access

times that the other JVMs. Java RTS has good performance before fragmentation,

but exhibits the worst performance once memory is fragmented due to its use of

tries instead of arraylets. Java RTS improves average case access times through

caching [50], but Fragger randomizes accesses to force worst-case behavior. Web-
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Configuration # Small Arrays 
Initially 

Allocated

Payload Size 
for Small/Large 

arrays

Large Arrays 
Allocated

Approximate 
Free Memory 

Utilization

CMRCMRCMRCMR

Schicm/cmr 
level C
Schicm/cmr 
level C
Schicm/cmr 
level C
Schicm/cmr 
level C

Schicm/cmr 
level A
Schicm/cmr 
level A
Schicm/cmr 
level A
Schicm/cmr 
level A

Schicm/cmr 
level CW
Schicm/cmr 
level CW
Schicm/cmr 
level CW
Schicm/cmr 
level CW

Sun RTSSun RTSSun RTSSun RTS

IBM 
Metronome
IBM 
Metronome
IBM 
Metronome
IBM 
Metronome

HotSpot 1.6HotSpot 1.6HotSpot 1.6HotSpot 1.6

339847 200/600 0 0.0%

58290 1024/3072 0 0.0%

6516 10240/30720 0 0.0%

889 88064/168960 0 0.0%

186862 200/600 32733 105.1%

41305 1024/3072 7026 102.1%

3608 10240/30720 715 118.9%

492 88064/168960 130 105.7%

163498 200/600 32699 120.0%

41275 1024/3072 7021 102.1%

4280 10240/30720 714 100.1%

499 88064/168960 130 104.2%

163498 200/600 32699 120.0%

41275 1024/3072 7021 102.1%

4280 10240/30720 714 100.1%

499 88064/168960 130 104.2%

290978 200/600 34170 70.5%

64394 1024/3072 9053 84.4%

6667 10240/30720 970 87.3%

777 88064/168960 201 103.5%

255006 200/600 95 0.2%

58998 1024/3072 108 1.1%

6450 10240/30720 710 66.0%

750 88064/168960 195 104.0%

307073 200/600 53837 105.2%

65859 1024/3072 11090 101.0%

6724 10240/30720 1121 100.0%

782 88064/168960 203 103.8%

Table 4.2: Fragger results. Percentage of memory different JVMs are able to reuse

when the heap becomes fragmented due to either relocation or fragmented alloca-

tion. Schism/cmr performs as well as JDK. Java RTS performs almost as well, but

WebSphere SRT performs poorly except for large arrays.
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Small 
Array Size

200

1024

10240

88064

Large 
Array 
Size

# of bytes 
used by 

one Small 
Array

# of bytes 
used by all 

Small Arrays 
allocated

# of bytes 
used after half 

are freed

# of bytes 
used for a 

single large 
array

# large 
arrays it 

should be 
possible to 

allocate 

# of large 
arrays 

actually 
allocated

600 335.46 54847431.48 27423715.74 838.66 32699 32699

3072 1383.78 57115618.56 28558501.17 4067.48 7021 7021

30720 13460.43 57610635.26 28805317.63 40297.42 714 714

168960 115441.00 57605058.20 28860249.60 221447.12 130 130

Table 4.3: Analytical vs. Observed. Comparing analytical results for fragger using

memory usage formulas and the empirical results for Schism/cmr level A. They

correspond exactly: Schism/cmr level A can never allocate more or less arrays than

predicted.
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Figure 4.19: Performance of fragmented array accesses. Solid lines depict access cost

prior to large array allocation and dotted lines after. Since JDK does not fragment,

performance is identical. Java RTS, Schism/cmr, and WebSphere SRT all fragment

arrays. WebSphere SRT performs the best out of the real-time collectors, while Java

RTS (which uses tries) has the most extreme worst-case.
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Sphere SRT performs just as well with fragmentation as without. Schism/cmr at

all predictability levels provides reasonable performance but is somewhat more effi-

cient when arrays are not fragmented.

4.6.2 Throughput

To evaluate the impact of Schism/cmr on throughput, the various configurations

are compared on the SPECjvm98 benchmark.6 SPECjvm98 experiments are executed

as follows. Each JVM is invoked three times, running the given benchmark for seven

iterations, and averaging the last three iterations. Those averages are again averaged.

This gives a four-iteration warm-up as necessary for the JIT-based JVMs to reach

steady state. For individual benchmarks the execution time differences between the

non-real-time JVMs (JDK and J9) and any of the other JVMs are statistically signif-

icant and almost always quite large. For brevity, the throughput overview focuses on

a geometric mean comparison that takes into account all SPEC benchmarks at once.

The differences between configurations are very pronounced (typically exceeding 10%)

and easy to reproduce.

Figure 4.20 shows a summary of SPECjvm98 performance. The two desktop

JVMs are the fastest (JDK and J9). Schism/cmr level C runs at 65% of JDK’s

throughput. Schism/cmr level C appears to be faster than the other two commercial

real-time JVMs. The figure also shows that there is approximately a 20% difference

in performance between level C and level CW, which forces all fast paths to fail. It

should be noted that there are reasons to take these numbers with a grain of salt. For

instance, all the JVMs were given the same heap size (50MB), but it is unclear how

that number is used. Some JVMs account for their meta-data separately from the

heap. Fiji VM accounts for all of the meta-data as part of the heap size. Moreover,

6 While there are benchmarks that are more revealing than SPECjvm98, it would be difficult to run
them on an embedded JVM. Fiji VM’s library is tailored for JavaME applications and lacks some
of the class libraries needed by larger benchmark suites. In fact, running SPECjvm98 itself requires
quite a few dedicated extensions.
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CMR min heap 
size (kb)

CMR max live 
size (kb)

CMR wastage 
(relative to heap 

size)

_201_compress

_202_jess

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

AVERAGE

Relative to CMR

_201_compress

_202_jess

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

AVERAGE

Relative to CMR

_201_compress

_202_jess

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

AVERAGE

Relative to CMR

6800.000 6288.922 0.075

3300.000 1197.691 0.637

9700.000 9545.891 0.016

16400.000 8002.316 0.512

300.000 257.871 0.140

8200.000 6993.922 0.147

1800.000 690.480 0.616

6642.857 4711.013 0.306

1.000 1.000 1.000

Schism/cmr level 
C min heap size 

(kb)

Schism/cmr level 
C max live size 

(kb)

Schism/cmr level 
C wastage

8800.000 8767.363 0.004

1900.000 1895.806 0.002

16900.000 16692.447 0.012

14800.000 14396.647 0.027

400.000 391.666 0.021

12200.000 11179.350 0.084

1200.000 1156.716 0.036

8028.571 7782.856 0.027

1.209 1.652 0.087

Schism/cmr level 
A min heap size 

(kb)

Schism/cmr level 
A max live size 

(kb)

Schism/cmr level 
A wastage

8800.000 8606.325 0.022

2100.000 2001.675 0.047

17800.000 16358.469 0.081

14900.000 14553.703 0.023

400.000 375.781 0.061

12400.000 12092.356 0.025

1300.000 1238.494 0.047

8242.857 7889.543 0.044

1.241 1.675 0.143

Table 4.4: External Fragmentation. On average, Schism/cmr requires roughly 65%

more memory than in CMR. However, the average minimum heap size in Schis-

m/cmr is only 20% (for level C) or 24% (for level A) larger than in CMR. This is

because in CMR roughly 30% of the heap is wasted due to fragmentation and other

overheads. Schism/cmr has almost no heap wastage.
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Throughput relative to HotSpot 1.6 Server
(More is Better)

Figure 4.20: SPECjvm98 Throughput. Fiji VM with CMR runs at roughly 84%

throughput relative to JDK, and Schism/cmr at 65%. Both appear to be faster

than other real-time Java products.

the JVMs have very different compilation strategies and optimizations. The argument

here is simply that the performance of Schism/cmr is competitive.

Figures 4.21, 4.22, and 4.23 focuse on Fiji VM and give time-memory curves. The

curves show the execution time of benchmark programs for various heap sizes. The

x-axis in these graphs represents multiples of the minimum heap size needed to run

the benchmark in any of the Fiji VM collectors. If a curve does not reach 1, it means

that at least one run of the benchmark failed at that heap size multiple. Figure 4.21

gives the geometric mean for the entire SPECjvm98 suite. The results clearly show

that Schism/cmr can run in less memory than CMR (which starts at a 3.3 multiple),

illustrating that fragmentation matters even in SPECjvm98.

To better explore the effects of the different collectors, two benchmarks with par-

ticularly extreme behavior are shown in more detail: 202 jess (Figure 4.22) and

209 db (Figure 4.23). The conclusion that can be reached from these outliers is

that some benchmarks run better in CMR, while others run better in Schism/cmr.
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Figure 4.21: Geometric mean time-memory performance of SPECjvm98. The x-axis

is a benchmark-dependent multiple of the minimum heap size which is measured as

the minimum for all available collector configurations. The y-axis is the execution

time. Schism/cmr is slightly slower than CMR, but runs in smaller heaps thanks

to its ability to tolerate fragmentation.

For example 202 jess and 213 javac run in smaller heap sizes in Schism/cmr be-

cause they can fragment a small heap quite rapidly in a non-moving collector. While

Schism/cmr can often run in a smaller heap, this is not always the case. 209 db

seems to generate no fragmentation, but uses a lot of small objects (for example,

there are a large number of Enumeration objects that are less than 16 bytes). For

small objects, Schism/cmr has enough of a size overhead that it can, and in this

case does, outweigh the benefits of fragmentation tolerance.

Table 4.4 reports data for external fragmentation of the different Fiji VM collectors

for SPECjvm98. The minimum heap size was obtained by running each benchmark

with increasing heap sizes (in 100KB steps) until the program was able to run. Then,

running at the minimum heap size, the total memory used by live objects at each

collection was recorded. The maximum is the maximum live size. This does not count

external fragmentation but does include all meta-data as well as internal fragmenta-
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Figure 4.22: Geometric mean time-memory performance for the SPECjvm98 202 jess

benchmark. The x-axis is a benchmark-dependent multiple of the minimum heap

size which is measured as the minimum for all available collector configurations. The

y-axis is the execution time. CMR outperforms Schism/cmr, slightly, but requires

larger heaps to run.

tion. The external fragmentation is reported as the wasted space (“wastage”): the

difference between maximum live size and minimum heap size, scaled by the heap size.

For some benchmarks, CMR exhibits > 50% wastage. For example, 202 jess has the

largest wastage (63.7%), which explains why Schism/cmr allows for smaller heap

sizes than CMR. Schism/cmr on average requires a 20% (for level C) or 24% (for

level A) larger heap size to run. Note that according to Table 4.4, a benchmark only

runs in a smaller heap size in Schism/cmr if it exhibits high wastage (>50%). The

reason why wastage in Schism/cmr is not 0% is that both the minimum heap size

and maximum live size measurements are imprecise: minimum heap size may be off

by nearly 100KB, and the maximum live size is not measured on every allocation but

only when the collector runs in response to heap exhaustion. This figure also shows

the typical object size overheads of Schism/cmr: 65% for level C and 67% for level

A. This is substantially better than the predicted worst case memory usage (i.e., the
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Figure 4.23: Geometric mean time-memory performance for the SPECjvm98 209 db

benchmark. The x-axis is a benchmark-dependent multiple of the minimum heap

size which is measured as the minimum for all available collector configurations. The

y-axis is the execution time. CMR runs in a smaller heap because the program does

not cause fragmentation and Schism/cmr has larger objects.

prohibitive 3.5× overhead of allocating very small objects) overheads as computed in

Section 4.4.4. These results lead us to two conclusions. First, if typical memory usage

is of the utmost concern, CMR will tend to outperform Schism/cmr. On average it

will run in a 20% smaller heap. But Schism/cmr allows for smaller heaps in some

pathological programs and always provides a hard bound on space usage.

4.6.3 Predictability

The LEON3 platform and the CDx [33] real-time benchmark are used to evaluated

predictability. The C language version of CDx is used as a baseline, since C is the

current language of choice for real-time developers.

CDx is an idealized air traffic collision detection algorithm that iteratively at-

tempts to detect potential collisions based on simulated radar frames. It utilizes



186

40

60

80

100

120

CDc CDj
Fiji CMR

CDj
Schism/cmr

Level C

CDj
Schism/cmr

Level A

CDj
Schism/cmr
Level CW

Ite
ra

tio
n 

Ex
ec

ut
io

n 
Ti

m
e 

in
 M

ill
is

ec
on

ds

70.478

96.565 97.244 98.51

112.489

Figure 4.24: Execution time of CDx compared to C. Boxes represent the middle 50%

population of data samples; the middle line is the median. The top and bottom

“whiskers” represent the maximum and minimum, respectively. Schism/cmr level

A performs just 40% worse than C.

200 220 240 260 280 300

40

60

80

100

120

Ite
ra

tio
n 

Ex
ec

ut
io

n 
Ti

m
e 

in
 M

ill
is

ec
on

ds

Iteration Number

CDc
CDj CMR and 

Schism/cmr level C CDj Schism/cmr level A

CDj Schism/cmr level CW

Figure 4.25: Execution time of CDx compared to C. A detailed view of a subset

of execution of CDx. CMR, Schism/cmr level A, and Schism/cmr level C per-

form almost identically. It is only Schism/cmr level CW that shows a performance

degradation.
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Figure 4.26: CDx Ratio. The ratio of runtime performance of Schism/cmr level C

to C. Each data point represents the same iteration executed in C and Java.

many arrays and performs significant mathematical computations, making it ideally

suited to low-level C programming idioms — but it has been deliberately implemented

using Java idioms even when they may be slow. For example, CDx uses classes in

java.util extensively, and makes no effort to resize, preallocate, or pool any objects.

CDx is configured with a single real-time periodic task running with a period of 120

milliseconds. CDx also has a C implementation, which is idiomatic C that tries to

follow the algorithmic behavior of the Java code with some differences. For instance,

the hash table used by the C code requires almost no allocation and has constant

time traversal. The code size of the Java version of CDx used in this experiment is

3859 LoC and the C version is 3371. (The C version is somewhat simpler since it does

not have hooks for the multiple configurations supported by the Java version). All

versions of CDx were run for 1,000 iterations. Note that on LEON3, execution is fully

deterministic: though the benchmarks were run multiple times for sanity, identical

performance was observed on each run. Figure 4.24 compares the performance of Java

and C. Java’s performance is only 40% worse than that of C for Schism/cmr level

A. For level C, the performance is 38% worse, and for CMR, the performance is 37%
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Figure 4.27: Worst-case execution time as a function of heap size. Schism/cmr de-

grades sooner, implying that this benchmark does not experience fragmentation. Lev-

els A and C have similar performance on larger heaps, but A performs worse for small

heaps because it uses more memory.

worse. Figure 4.25 shows a “zoomed in” view of just 100 iterations (out of 1,000).

Observe the similarity in the shape of the plots for C and Java. Clearly the variations

are algorithmic and not due to the JVM or the GC. The overhead of CW is clear but

remains acceptable. Figure 4.26 shows the ratio between C and Schism/cmr level C

for each iteration. This again shows that there are no outliers. The performance dif-

ference is accounted for by the various checks performed by Java (for a more detailed

look at the overheads of Java see [52]). Figure 4.27 gives the worst-case observed

behavior of the different collectors when the heap size ranges between 500 KB and

1500 KB. For Schism/cmr, the minimum heap size in which the program can run

without missing deadlines is 1000 KB whereas for CMR it is 600 KB.

Figure 4.28 gives the minimum mutator utilization (MMU) of the different col-

lectors for CDx. MMU is often used as a metric for real-time garbage collectors [21].

It measures the minimum amount of time that the mutator was able to run in a

time window of a given size. MMU is interesting because it embodies a metric that
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Figure 4.28: Minimum mutator utilization for CDx on LEON3. Schism/cmr level A

has 400 microsecond pauses, CMR and level C have roughly millisecond-level pauses,

and level CW pauses for 9 milliseconds in the worst case.

combines the length of GC pauses with their frequency. Unfortuntely, the notion of

collector pause is a little tricky to define. Two potential definitions were considered:

(i) time during which the mutator is preempted by the collector, or (ii) time spent

by the mutator in allocation, store barrier, array access, and stack scan slow paths.

Under the first definition, Schism/cmr exhibits an MMU of 100% with no pauses

(provided that the heap size is > 1100KB and the collector is the lowest priority

thread, which is the default). But this is not particularly informative since all collec-

tors have slow paths which may slow down execution. This evaluation chooses (ii)

and measures it conservatively as pauses include some mutator work: array access

and allocation slow paths include some of the same logic as the fast paths that gets

charged to the mutator. The longest pauses are in Schism/cmr level CW, which

are due to the allocation of large arrays: level CW simulates the effect of level C

attempting to allocate a large array contiguously, failing, and then attempting to al-

locate payload fragments the quick way (bump pointer) but failing again, and having

to go into a deeper slow path for each fragment. Level A exhibits the smallest pauses
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Figure 4.29: SPECjbb2000 scalability. Fiji VM and other JVMs on an 8-way multi-

core.

(roughly 0.4 ms) because almost all allocation is done 32 bytes at a time. The 0.4 ms

pause corresponds to the time it takes to zero-initialize a fresh 4096 byte page.

The performance of CDx was also measured against other real-time Java virtual

machines on Sharpay. Because Sharpay is at least an order of magnitude faster, the

workload was increased to 60 planes as opposed to just 6. The worst-case observed

execution time for one iteration of the benchmark on Java RTS is 25.4 ms, WebSphere

SRT is 16.7 ms, while Fiji VM is 9.9 ms. Specifically, CMR and Schism/cmr level C

has a worst-case of 5.2 ms, and levels A and CW are 6.4 ms and 9.9 ms respectively.

4.6.4 Scaling Predictability

Previous sections have shown that Schism/cmr performs respectably on mostly

uniprocessor benchmarks. But real-time systems are slowly and steadily moving

towards the adoption of multiprocessors. This section evaluates the scalability of

Schism/cmr using the SPECjbb2000 benchmark [40] running on an 8-way machine
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(Sharpay). SPECjbb2000 is a soft real-time workload, in that it is reasonable to

assume that in a real transaction processing system worst-case processing times are

important.

Figure 4.29 shows that the performance does scale but not as well as some of

the other systems. The most likely reason is that Schism/cmr is not yet a parallel

collector. While there is nothing in the algorithm that precludes parallelization,

this has not been implemented yet. At 8 warehouses on an 8-way machine, the

benchmark ends up competing for CPU time against the collector itself. WebSphere

SRT scales much better than Fiji VM. Both CMR and Schism/cmr exhibit better

performance than Java RTS when the processors are overloaded. When the processor

is not overloaded, Java RTS scales about as well as CMR.

Figure 4.30 gives the worst-case transaction times for all JVMs. Because real-

time scheduling is not used, these measurements tend to be somewhat noisy — a

millisecond hiccup due to OS scheduling is common, but not common enough to be

visible on every run. Thus the experiments were run three times and the average is
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reported. For measurements up to 7 warehouses, all of Fiji VM’s collectors produce

better results than any other JVM. With either CMR or Schism/cmr at any pre-

dictability level, millisecond-level worst-case transaction times are guaranteed. At 8

warehouses, Fiji VM performs about the same as WebSphere SRT, requiring between

52 and 171 milliseconds in the worst case (SRT requires 165 milliseconds). For 9 or

more warehouses, all JVMs steadily degrade to worst-case transaction times in excess

of 200 milliseconds.

These results show that Schism/cmr scales about as well as Java RTS while

achieving significantly better predictability than any other JVM so long as the col-

lector has a spare core on which to run.

4.6.5 Detailed Throughput Results

This section provides the complete throughput performance results for Fiji VM

with all configurations of CMR and Schism/cmrcompared against HotSpot 1.6

(client and server), when running on an Ubuntu 9.10 Linux 2.6.31 Intel Core i7

Q820 1.73 GHz machine. For each benchmark and configuration, 4 data samples

were taken by using two virtual machine executions with 4 benchmark iterations and

taking the last two samples. The first two samples from each execution are just used

for warm-up. The table shows 95% confidence intervals. SPECjvm98 is used as the

benchmark suite. Each benchmark is run using 3× the minimum heap size for all

collectors in Fiji VM. Table 4.5 shows the results for HotSpot 1.6 (client and server);

CMR with and without quickstore, with and without placing large objects in H; and

all configurations of Schism/cmr, ranging from level A to C and AW to CW, as well

as with and without quickstore, and with and without RCE optimizations. All Fiji

collectors are run both in a stop-the-world (STW) fashion and concurrently, where

the collector is triggered once the heap is half full.

HotSpot 1.6 is faster than Fiji VM, but only slightly. CMR outperforms all

other Fiji configurations in throughput. Running CMR and Schism/cmr in a stop-
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Configuration compress jess db javac mpegaudio mtrt jack GEOMEAN

HotSpot 1.6 client 2937± 13.3 782± 21.9 3320± 305 1584± 37 1711± 26.0 397± 6.0 975± 35 1345± 26.1

HotSpot 1.6 server 3096± 146 787± 54 2129± 39 1568± 135 1782± 19.6 406± 43 939± 31 1275± 20.4

CMR STW 3020± 34 978± 18.4 2582± 37 1227± 10.8 2044± 17.8 497± 31 942± 42 1367± 7.8

no quickstore 3016± 19.4 1027± 12.0 2611± 16.3 1265± 21.4 2190± 9.6 511± 33 976± 16.1 1411± 9.4

large objects in H 2977± 14.4 985± 22.3 2572± 15.7 1225± 23.4 2048± 32 498± 35 944± 14.4 1366± 14.3

Schism/cmr C STW 4602± 119 1204± 36 3190± 37 1557± 10.5 2582± 58 651± 14.1 1172± 26.1 1769± 2.5

no quickstore 4510± 66 1285± 33 3247± 22.2 1616± 11.4 2650± 44 705± 75 1211± 9.0 1829± 33

no RCE 4742± 55 1218± 9.0 3229± 21.2 1523± 31 3410± 38 635± 3.6 1158± 8.4 1839± 6.0

Schism/cmr B1 STW 4747± 36 1240± 12.9 3166± 20.2 1569± 19.1 3622± 59 687± 22.6 1238± 15.4 1902± 6.3

Schism/cmr B2 STW 6654± 28.0 1310± 31 3566± 73 1794± 57 3240± 194 645± 6.1 1234± 32 2033± 18.4

Schism/cmr A STW 6222± 69 1601± 21.8 3867± 41 2028± 23.0 4448± 32 750± 27.0 1386± 35 2319± 11.6

Schism/cmr CW STW 6641± 80 2288± 29.2 4216± 11.7 2590± 21.5 5080± 43 919± 15.6 1816± 9.7 2817± 18.8

Schism/cmr B1W STW 5908± 114 2168± 5.0 4097± 20.3 2432± 17.8 4280± 11.8 943± 28.7 1786± 27.0 2651± 6.6

Schism/cmr B2W STW 6590± 36 2251± 27.9 4206± 29.7 2491± 15.6 5110± 16.1 967± 61 1741± 10.4 2796± 22.5

Schism/cmr AW STW 6218± 8.4 2188± 5.2 4150± 16.7 2456± 41 4573± 93 920± 34 1686± 45 2676± 14.7

CMR 3006± 13.3 1275± 70 2600± 10.1 1433± 34 2067± 12.8 495± 31 1130± 72 1492± 25.7

no quickstore 2992± 22.9 1309± 54 2524± 28.6 1461± 6.7 2178± 6.0 486± 7.4 1141± 10.8 1504± 8.7

large objects in H 2960± 11.9 1216± 22.5 2557± 13.9 1401± 13.1 2024± 35 496± 49 1139± 45 1468± 18.7

Schism/cmr C 4518± 40 1502± 52 3221± 80 1894± 60 2788± 451 615± 17.9 1330± 66 1913± 49

no quickstore 4485± 45 1596± 27.9 3263± 32 1952± 58 2827± 506 632± 65 1338± 21.5 1951± 58

no RCE 4466± 61 1485± 55 3182± 20.4 1959± 63 3404± 7.0 599± 6.6 1330± 71 1962± 7.7

Schism/cmr B1 4533± 83 1542± 8.3 3281± 22.7 2039± 65 3505± 17.5 622± 23.8 1474± 14.0 2046± 15.7

Schism/cmr B2 6540± 97 1756± 24.7 3600± 53 2432± 30 3403± 241 625± 49 1548± 63 2289± 27.2

Schism/cmr A 6200± 111 1948± 6.2 3833± 42 2556± 108 4582± 41 693± 13.5 1694± 40 2514± 16.3

Schism/cmr CW 6621± 148 2838± 54 4241± 23.9 3273± 42 5060± 35 890± 18.3 2189± 19.6 3070± 22.8

Schism/cmr B1W 5874± 93 2590± 125 4153± 41 3042± 73 4421± 9.9 895± 28.1 2100± 108 2868± 32

Schism/cmr B2W 6617± 124 2781± 100 4097± 35 3093± 2.2 5074± 27.0 898± 27.4 2194± 166 3027± 62

Schism/cmr AW 6348± 22.8 2646± 60 4083± 96 3132± 26.9 4657± 28.5 880± 55 2018± 10.9 2911± 27.1

Table 4.5: Complete results of SPECjvm98 performance comparisons for HotSpot,

Fiji CMR and Fiji Schism/cmr. This table shows execution times in milliseconds

and 95% confidence intervals over 4 samples.

the-world fashion is slightly faster than running it concurrently. This is most likely

due to decreased memory contention. Schism/cmr benefits significantly from RCE

optimizations, especially on the numerical mpegaudio benchmark. This benchmark

has repeated loads from the same array at the same index in some of its inner loops,

which is likely the main reason for the speed-up when RCE is enabled. Schism/cmr
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performs best at level C, but has best worst-case performance at levels A and B1

(levels AW and B1W outperform levels CW and B2W). Overall, this comparison

shows that Fiji VM CMR is almost as fast as HotSpot 1.6 client and only slightly

slower than HotSpot 1.6 server, and that Fiji VM Schism/cmr achieves 66% of the

throughput of HotSpot 1.6 server when running at level C.

4.7 Discussion

Schism/cmr provides fragmentation tolerant garbage collection with O(1) wait-

free heap accesses. This is accomplished by combining ChengBlelloch-style repli-

cation copying [21] with CMR, arraylets [15], and fragmented allocation [42]. The

experimental evaluation is the most thorough for real-time garbage collectors to date.

The performance results show that this approach provides better predictability in

both time and space than any previous real-time garbage collector, including com-

mercial solutions from IBM and Sun.
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5 CONCLUSION

This dissertation set out to show that real-time garbage collection can be made to

provide wait-free heap accesses while eliminating the need to stop program execution.

Previous garbage collectors failed in this regard. MarkSweep and SemiSpace both

require the application to stop for the entire duration of garbage collection, whose

execution time is proportional to the heap size. The CMS and DLG collectors im-

proved on MarkSweep by reducing, and then eliminating, the need to stop program

execution. But at the same time they failed to provide fragmentation tolerance. Pro-

grams that use CMS or DLG will sometimes run out of memory due to the shape

of the heap even when there is enough total free space to satisfy memory allocation

requests. Furthermore, both CMS and DLG require blocking atomic sections to

be used when modifying the heap. This dissertation is concerned with eliminating

the need to block when performing any kind of heap access. Baker, Brooks, and

ChengBlelloch all try to address fragmentation, but only accomplish this by in-

troducing more blocking atomic sections while still requiring the entire application to

sometimes pause.

This dissertation addresses all of these shortcomings. The CMR collector im-

proves upon DLG by eliminating the need for blocking atomic sections on heap ac-

cesses. CMR has been shown to exhibit excellent performance in both time and space,

but only empirically – in the worst case, fragmentation will cause allocations to take

non-deterministically longer or fail entirely. The Chicken, Clover, and Progress

algorithms were introduced as a way of eliminating fragmentation in CMR, by con-

currently evacuating objects from fragmented regions of the heap. The use of copying

makes these algorithms analogous to Baker, Brooks, and ChengBlelloch; but

unlike those algorithms, the application is never paused and blocking atomic sections

are not required during heap accesses. Heap accesses are always O(1) and either
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wait-free (in Chicken and Progress) or probabilistically lock-free (in Clover).

However, each of these algorithms has its own shortcomings: Chicken may some-

times fail to copy objects, Clover is not completely wait-free and does not have a

strong progress guarantee for the copier, while Progress requires that the applica-

tion sticks to a fairly simplistic model of accessing the heap and precludes the use

of lock-free compare-and-swap by the application. Chicken’s failure to copy objects

means that a rigorous proof of fragmentation tolerance is likely to be impossible, at

least under the current understanding of the nature of fragmentation. To prove that

Chicken has better space bounds than MarkSweep [7, 8], it would be necessary

to prove that there is a negligible probability of objects getting pinned by Chicken

in such a pattern that still results in worst-case fragmentation. Such a proof may

be possible in the future but has thus far not been attempted. Clover is a proba-

bilistic algorithm; sometimes it will fail to provide its lock-freedom guarantee. The

likelihood of such a failure is negligible on systems that provide a wide 128-bit atomic

compare-and-swap. However, Clover has other, more subtle, modes of failure. If a

program repeatedly writes a field, Clover’s copier may fail to make any progress. If

multiple application threads repeatedly write to the same field, then not only will the

copier’s progress be inhibited, but the application threads may end up slowing each

other down due to the use of a lock-free, rather than wait-free, heap store algorithm.

Progress attempts to address this and provides a wait-free copier and a wait-free

heap store implementation, but has its own limitations. Progress is likely to be

most useful for simple languages where all fields have the same width and have an

easily accessed special value that can be used by the copier to tag fields that haven’t

been copied.

But the main point of this dissertation is that fragmentation is best dealt with

by embracing it, rather than by copying objects to eliminate it. Copying has been

thought to be the best approach for dealing with heap fragmentation since since the

works of Cheney [4] and Haddon and Waite [9], and is the predominant approach used

in current commercial garbage collectors such as Sun HotSpot [47] and IBM J9. The
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only alternative to copying considered previously was Siebert’s fragmented allocation,

but it was thought to be too expensive due to the introduction of logarithmic-time

heap accesses. This dissertation makes Siebert’s approach practical by eliminating

this logarithmic overhead with the introduction of the Schism algorithm. In Schism,

heap accesses are wait-free and constant time. A striking feature of Schism is that

it is just a mix of previously known techniques, such as fragmented allocation [42],

arraylets [15], replication [21], and concurrent mark-sweep [13, 17–19]. Even though

all of these techniques have been known for the last decade they have never previ-

ously been combined in the way that Schism does, and yet doing so appears to solve

the problem of wait-free fragmentation tolerance for good. This dissertation goes

further than just proposing the algorithm; it also introduces a production-strength

implementation, Schism/cmr, which is shown to outperform all available commercial

real-time garbage collectors. The overhead of using concurrent wait-free fragmenta-

tion tolerant real-time garbage collection turns out to be around 30%, which is less

than the overhead of non-fragmentation-tolerance real-time garbage collectors such

as the IBM WebSphere SRT Metronome.

Is it the case then, that garbage collection is ready for use in real-time systems?

Schism/cmr provides deterministic O(1) heap accesses and deterministic O(n) al-

location, where n is the size of the object being allocated. It also provides a higher

predictability level, dubbed level A, where allocation is Θ(n) – given a choice of n

it will never take shorter, or longer, than a predetermined amount. Fragmentation

is never a problem; no shape of the heap can ever cause an allocation to fail. If

the number and size of objects live in the heap is known, the success or failure of

allocation can be predicted by formulas that are provided with Schism/cmr. But

whether or not this is enough remains to be seen. A concurrent garbage collector

such as Schism/cmr requires a concurrent thread of execution. If this thread keeps

up with allocation demand, then the application’s allocations are guaranteed to suc-

ceed; otherwise they may either fail, or the allocation will be forced to stall until the

collector keeps up. It is theoretically possible to prove, for a given application, if it
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will allocate at a pace with which the collector can cope [14–16], but this requires a

detailed analysis of the application’s execution time, allocation rate, an the collector’s

execution time and collection rate. Static analyses for characterizing the execution

time and allocation rate behavior of programs have yet to be shown to be scalable and

precise enough to be used in real-world applications. Baker’s collector [10], as well as

recent collectors such as Siebert’s JamaicaVM [42–44] take the approach of running

the collector in tiny increments as part of allocations. While this eliminates the need

for the allocation rate and collection rate to be predicted, this introduces other prob-

lems: allocation will sometimes take less time, if the collector is idle, or more time,

when it isn’t. [42] Moreover, this approach requires tightly regulating the scheduling

of all threads and injecting additional program transformations any time that local

variables are assigned. [42] It is not clear if this approach is performant enough to be

widely adopted, and the results published by Siebert never show comparisons against

any well-understood baseline.

A deeper problem with garbage collection is that the programmer no longer knows,

just by looking at the program text, when objects will be reclaimed. Even if a garbage

collection schedule was picked that guaranteed that the collector keeps up, the precise

time at which any given object is freed would be difficult to predict. This in turn

makes it difficult to predict exactly how much memory is available at the time of

any allocation. Manual memory management facilities do not have this problem; it

is relatively easy to track the amount of memory allocated or freed at any program

point.

It appears that the real-time garbage collection field still has more open problems.

Can a garbage collection scheduling algorithm be designed that guarantees that the

collector keeps up, while ensuring that application actions execute both quickly and

deteministically? No garbage collector has been shown to guarantee both properties.

But even if we had such a collector, would it be possible to then guarantee that the

programmer knows exactly how much memory is available at any program point?

No known solution to this exists. Both problems may be solved if better static
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analysis tools existed, which could accurately characterize the heap usage behavior

of programs – however none of the tools that have been proposed thus far offer either

the scalability or precision necessary for real-world use.
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Appendix: Region-based Free Memory Organization in CMR

This appendix dives into the details of free memory organization in CMR. The goal

of CMR is to enable fast O(n) allocation of objects, if they are sufficiently small

or if fragmentation is nonexistent. These two properties will be leveraged by subse-

quent garbage collection algorithms discussed in this dissertation in order to provide

fragmentation tolerance.

Collectors such as SemiSpace provide O(n) allocation by using a bump pointer.

The intuition of CMR is to make the SemiSpace-style bump-allocation mechanism

work in a MarkSweep-style concurrent collector. CMR accomplishes this by or-

ganizing memory into fixed-size pages and variable-size lines, collectively known as

regions. This approach to organizing the heap is not new to CMR. The best known

account of how to implement mark-region memory management is the description

and evaluation of Blackburn and McKinley’s Immix [23]. Immix is a high-throughput

stop-the-world collector. It does not attempt to make collection concurrent. Instead,

it takes advantage of common-case bump pointer allocation to increase the end-to-end

performance of programs. CMR can be viewed as adopting the Immix approach to

a concurrent setting.

The CMR heap H is partitioned into pages. The page size, pagesize, is chosen

so that it is larger than most typical memory allocation requests. CMR uses 1024

memory locations for a page1. The collector tracks the status of pages (whether they

are in use or free) in addition to tracking the status of objects. When a page is not

completely free but does have some free space, the free space is coalesced into lines.

Each page has a header of size pageheadsize that contains a link pointer for the line

free list, and page bits for tracking which locations in the page are in use.

1On a 32-bit system, where each slot within an object is 4 bytes, this would translate to 4096 bytes.
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Allocation requests of size greater than pagesize−pageheadsize require finding a

contiguous set of free pages. While this can be done in O(1) time using a trie [24],

this dissertation does not consider this optimization and uses a O(|H|) search over

all pages when the allocation request is large. For allocation requests smaller than

pagesize−pageheadsize, each thread maintains a currently active allocation region (which

may be either a page or a line) and attempts to perform a bump allocation within

that region. If the region is exhausted, the collector will find a free line that is large

enough to satisfy the request; if this fails, the collector will find the next free page.

This leads to the following performance characteristics:

• Allocation requests for the smallest possible object size always complete in O(1)

because the first line, if one exists, will satisfy the request. The smallest possible

object size can be artificially restricted to ensure that this property holds for

all requests n ≤ nmin for any value of nmin. On the other hand, making nmin

too large will result in wasted space if n is often significantly smaller.

• If the collector is augmented with a mechanism to defragment pages (i.e. evac-

uate the contents partially-but-not-fully inhabited pages to another part of the

heap), then all requests for n ≤ pagesize−pageheadsize will succeed in O(n) time.

Most of that time will be devoted to initializing the values in the object to v.

If pages are fragmented, then in the worst case all of the free lines will have

to be searched leading to O(|H|) performance. This could be turned into O(n)

performance using some variant of segregated fit [3,24], where a separate list of

free lines is maintained for each class of sizes.

• Requests for objects n > pagesize−pageheadsize require O(|H|) time unless some

mechanism is used to split large objects [15] or if the external fragmentation of

pages is addressed using hardware memory management techniques [11, 25], in

which case large object allocation can also be made O(n).

In summary, CMR by itself achieves good performance for small objects or if there

is no fragmentation, but poor worst-case performance otherwise. However, it can be
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augmented with known techniques to bring the worst-case performance down. Even

then however, there is no known way of performing evacuation of partially occupied

pages concurrently to the program without introducing blocking into either Load or

Store or both. Thus the purpose of CMR is to provide a solid baseline as well as a

stepping stone for reasoning about concurrent wait-free fragmentation tolerance.

The next sections discuss how CMR manages regions of free memory. This in-

cludes the management of pages, the management of large objects that span multiple

pages, and the management of free lines.

A.1 Page Management

The goal of page management in CMR is to be able to rapidly distinguish between

pages that are entirely free and those that are occupied. This is analogous to the

tracking of flag(o) for objects. As with flag(o), there is the concern that pages allocated

during the sweep must survive the current collection cycle but become candidates for

reclamation on the next cycle. Additionally, there is a difference between a page that

is free, in which case it is available for use in new page allocations immediately, and a

page that is not marked, in which case the collector has not yet found any live objects

in the page but it has not yet proved that all of the objects are dead. A thread may

reserve exactly one page for use in bump-pointer allocation. These reserved pages

are being concurrently modified by that thread and should not be operated on by the

collector; this case requires its own page state as well. CMR uses five page states:

1. Locked. A page in the Locked state has been reserved by either the application

or by the collector. The purpose of the Locked state is to indicate to any

algorithm that enumerates over pages that this page should not be modified.

Additionally, all pages that correspond to memory outside of H are implicitly

marked Locked. This permits the collector to easily operate over a heap that is

not contiguous in the larger application memory space. Finally, pages used by

large objects that span multiple pages are also marked Locked to indicate that
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pageLineSet(p, v) =

wr(p∗pagesize, v)

pageLineGet(p) =

return rd(p∗pagesize)

pageBitsSet(l, v) =

p ← l/pagesize

o ← l−p∗pagesize−pageheadsize

w ← rd(p∗pagesize+1+o/locationbits)

if v = true

w ← w | (1<<(o%locationbits))

else

w ← w & ˜(1<<(o%locationbits))

wr(p∗pagesize+1+o/locationbits, w)

pageBitsGet(l, v) =

p ← l/pagesize

o ← l−p∗pagesize−pageheadsize

w ← rd(p∗pagesize+1+o/locationbits)

if w & (1<<(o%locationbits)) 6= 0

return true

else

return false

Figure A.1: Helper functions for managing the page header of in-use pages.
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pagePrevSet(p, v) =

wr(p∗pagesize, v)

pagePrevGet(p) =

return rd(p∗pagesize)

pageNextSet(p, v) =

wr(p∗pagesize+1, v)

pageNextGet(p) =

return rd(p∗pagesize+1)

Figure A.2: Helper functions for managing the page header of free pages.

their management is handled by a separate mechanism, described in the next

section.

2. Populated. A populated page is one that has objects that survived the last

collection cycle. Some or all of these objects may survive this collection cycle,

but as far as the collector knows, all of the objects in this page might be dead.

3. Shaded. A populated page becomes shaded as soon as the collector finds that

any of its objects are live. Shaded pages transition to Populated after the

collection cycle finishes.

4. Relinquished. The page had been used for allocations in this collection cycle,

and thus should not be freed in this cycle because those objects can only be

reclaimed on the next cycle. The final phase of the collector – a post-sweep –
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removeFreePage(p) =

atomic

if pagePrevGet(p) = 0

freePageHead ← pageNextGet(p)

else

pageNextSet(

pagePrevGet(p), pageNextGet(p))

if pageNextGet(p) 6= 0

pagePrevSet(

pageNextGet(p), pagePrevGet(p))

ptSet(p, 1)

foreach l in [p∗pagesize, (p+1)∗pagesize−1]

wr(l, 0)

return p

addFreePage(p) =

atomic

pageNextSet(p, freePageHead)

pagePrevSet(p, 0)

if freePageHead 6= 0

pagePrevSet(freePageHead, p)

freePageHead ← p

ptSet(p, 5)

Figure A.3: Helper functions for allocating and reclaiming pages.
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changes Relinquished pages into Populated ones. This phase is fast because it

considers only pages and nothing else.

5. Free. A free page is one that is available for reuse immediately. It is guaranteed

to not have any live objects. A populated page that never gets shaded during

a cycle will be transitioned to Free during the sweep.

The state of pages is maintained in a page table such that for any memory address

l, ptSet(l/pagesize, s) and ptGet(l/pagesize) set and get the state of the page that l resides

in. Additionally, a ptCas(l/pagesize, s→t) operation is provided for performing atomic

compare-and-swap on page state. Each entry in the page table requires 3 bits, but is

best implemented as 4 bits to simplify indexing. With a page size of 1024, the page

table requires only a tiny fraction of space compared to the size of the heap. The set

P stores the set of pages that are in H, but is allowed to contain pages outside of

the heap so long as their page state is Locked. This makes it easy to implement P as

just a range of memory addresses even if H is discontiguous.

Pages are organized into a header and a payload. The header stores one field

reserved for free line management and a bitvector of locations that are live. Mark-

ing sets bits in the bitvector to indicate those locations in the page that correspond

to known-live objects. The field reserved for free line management is accessed using

pageLineSet(l/pagesize, v) and pageLineGet(l/pagesize), while the bitvector is accessed us-

ing pageBitsSet(l, v) and pageBitsGet(l). Assuming a 32-bit system, the size of the page

header is (pagesize+32)/33, or 32 out of 1024 locations with a page size of 1024. This

value is referred to as pageheadsize, and the number of bits in each location is referred

to as locationbits. Entirely free pages have neither a page header nor a payload; instead

they contain prev and next fields for linking pages onto a page free list. These are ac-

cessed using pagePrevGet(l/pagesize), pagePrevSet(l/pagesize, v), pageNextGet(l/pagesize),

and pageNextSet(l/pagesize, v). The variable freePageHead stores the head of the free

page linked list. Pages may be allocated or freed using the free page linked list.

Any page on the linked list can be picked for allocation. The removeFreePage(p) and
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lohNextSet(o, v) =

wr(o−2, v)

lohNextGet(o) =

return rd(o−2)

lohNumPages(o) =

return rd(o−1)

allocLOH(s) =

atomic

nPages ← d(s+2)/pagesizee

if ptGet(q) = 5 . q in [p, p+nPages−1]

foreach q in [p, p+nPages−1]

removeFreePage(q)

o ← p∗pagesize+2

lohNextSet(o, lohHead)

lohHead ← o

wr(o−1, nPages)

wr(o, fA)

return o

else

abort

Figure A.4: Helper functions for managing large object headers.
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addFreePage(p) functions are provided for this purpose. Implementations of these

functions are shown in Figure A.1, A.2, and A.3.

A.2 Large Object Management

Large objects are allocated by locating a contiguous sequence of free pages in

P that is large enough to satisfy the allocation request. These pages are subsequently

locked, and a large object header (LOH) is created. A linked list of large object

headers is maintained by the collector for the purpose of sweeping. The large object

header contains two fields: a link pointer for the linked list, and the number of pages

occupied by the large object. Each of these fields requires one memory location; the

actual object begins after these two locations. The link list pointer can be accessed

using lohNextGet(o) and lohNextSet(o, v). The number of pages used by the large object

can be accessed using lohNumPages(o). The head of the large object head free list is

stored in lohHead. A helper function to allocate large objects, allocLOH(s) given an

object size s = len2size(n), creates the large object header and places it on the linked

list. It does not fully initialize the object other than setting it as marked to prevent

premature deallocation; the full initialization is done by Alloc. The function takes an

object size s and accounts for the two large object header fields (lohNextGet(o) and

lohNumPages(o)). These functions are shown in Figure A.4.

A.3 Free Line Management

Pages may be completely full, partially full, or completely empty. Completely

empty pages get placed on a page free list, while pages that are completely full

require no special treatment. However, if a page contains some free space than a

mechanism separate from the page free list is necessary for reclaiming that space

during allocation. This is the purpose of free line management. A free line is a region

of free memory internal to a page, and is tracked using a per-page free list whose

head is accessed using pageLineSet and pageLineGet. Each line contains four fields: two
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linePrevSet(l, v) =

wr(l, v)

linePrevGet(l) =

return rd(l)

lineNextSet(l, v) =

wr(l+1, v)

lineNextGet(l) =

return rd(l+1)

lineLastSet(l, v) =

wr(l+2, v)

lineLastGet(l) =

return rd(l+2)

lineSizeSet(l, v) =

wr(l+3, v)

lineSizeGet(l) =

return rd(l+3)

nextLinePage(p) =

return lineNextGet(

lineLastGet(

pageLineGet(p)))

Figure A.5: Helper functions for managing free lines.
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anyCanSatisfy(p, s) =

cur ← pageLineGet(p)

if cur = 0

return false

loop

if lineSizeGet(cur) ≤ s

return true

if cur = lineLastGet(cur)

return false

cur ← lineNextGet(cur)

removeFreeLines(p) =

if pageLineGet(p) 6= 0

first ← pageLineGet(p)

last ← lineLastGet(first)

if linePrevGet(first) = 0

freeLineHead ← lineNextGet(last)

else

lineNextSet(linePrevGet(first), lineNextGet(last))

if lineNextGet(next) 6= 0

linePrevSet(lineNextGet(last), linePrevGet(first))

linePrevSet(first, 0)

lineNextSet(last, 0)

pageLineSet(p, 0)

return first

else

return 0

Figure A.6: Helper functions for removing free lines.
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findFreeLines(s) =

retry:

cur ← freeLineHead

while cur 6= 0

page ← cur/pagesize

if anyCanSatisfy(page, s)

result ← removeFreeLines(page)

loop

pageState ← ptGet(page)

if pageState = 1

goto retry

elsif ptCas(page, pageState→1)

return result

cur ← nextLinePage(cur)

return 0

Figure A.7: Helper function for finding and removing free lines that satisfy an allo-

cation request.

fields for prev/next links, a field that refers to the last free line on the page, and a

size. The global variable freeLineHead stores the head of the free line list for all pages

in the heap. Additional helper functions are provided to find a page of free lines

where some line will satisfy an allocation request, and remove free lines associated

with a page. These are shown in Figure A.5, A.6, and A.7. Threads performing line

allocation will reserve an entire page of free lines at a time using findFreeLines(s) for a

size s. The collector may use removeFreeLines(p) directly, for example when it finds an

entirely free page that previously had free lines in it.
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The findFreeLines(s) function has a race against the collector’s sweep algorithm,

where the collector may commence freeing a page that previously had free lines in

it. This is the reason for findFreeLines(s) performing a check to see if the page had

become locked. If a page becomes locked after an application thread removes its free

lines, the findFreeLines(s) routine reattemptes its free line search.

A.4 Thread Local Allocation Buffers

Threads may reserve (lock) a page for allocation. This may occur either by calling

findFreeLines(s) or removeFreePage(p). Each thread stores information about its locked

page in A[t].page and A[t].line. A[t].page may be 0 to indicate that the thread does

not have a thread-private allocation buffer. A[t].line may be 0 to indicate that line

allocation is not being used. Threads may also choose to allocate using a bump-

pointer within a page or line. A bump allocation context is associated with each

thread for this purpose. A[t].start is used to indicate the starting location of the

bump pointer (the beginning of a line or the beginning of the page), A[t].bump is the

bump pointer, and A[t].size is the size of the bump allocation region. Every allocation

proceeds by attempting five allocation modes (large, bump, line within the current

page, line from the global line free list, and page) in the following order:

1. First the request size s is checked to see if it is larger than the largest object

that can be allocated in a page (the page payload size). If it is, then large object

allocation is done using allocLOH(s).

2. Bump allocation is attempted next. After the first object is allocated using

either page or line allocation, the remaining space in that free region will be

given to the bump allocator. Bump allocation succeeds if:

A[t].bump + s− A[t].start ≤ A[t].size (A.1)

3. Line allocation is attempted by searching the lines associated with the current

page. This proceeds by setting the first line large enough to support the current
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findLocalLine(s) =

line ← 0

cur ← A[self].line

while cur 6= 0

if lineSizeGet(cur) ≤ s

line ← cur

break

cur ← lineNextGet(cur)

if line = 0

relinquishTLAB(self)

else

if linePrevGet(line) = 0

A[self].line ← lineNextGet(line)

else

lineNextSet(linePrevGet(line),lineNextGet(line)

if lineNextGet(line) 6= 0

linePrevSet(lineNextGet(line),linePrevGet(line)

A[self].start ← line

A[self].bump ← A[self].start

A[self].size ← lineSizeGet(line)

Figure A.8: Helper function for allocRaw(s) (Figure A.9) that find the next line within

the thread’s private allocation buffer.
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allocRaw(s) =

if s > pagesize−pageheadsize

return allocLOH(s)

else

while A[self].bump + s − A[self].start > A[self].size

if A[self].line 6= 0

findLocalLine(s)

else

relinquishTLAB(self)

atomic

line ← findFreeLines(s)

if line 6= 0

A[self].page ← line/pagesize

A[self].line ← line

else if freePageHead 6= 0

A[self].page ← removeFreePage(freePageHead)

A[self].start ← A[self].page∗pagesize + pageheadsize

A[self].bump ← A[self].start

A[self].size ← pagesize − pageheadsize

else

abort

o ← A[self].bump

A[self].bump ← o + s

return o

Figure A.9: Thread private allocation helper function. The findLocalLine(s) function

is shown in Figure A.8, and the relinquishTLAB(t) function is shown in Figure A.10.
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relinquishTLAB(t) =

if A[t].bump 6= 0

pageSetLine(A[t].page,0)

if 2 ≤ phase ≤ 4

ptSet(p, 4)

else

ptSet(p, 2)

A[t].page ← 0

A[t].line ← 0

A[t].start ← 0

A[t].bump ← 0

A[t].size ← 0

Figure A.10: Helper function for relinquishing the thread local allocation buffer.

allocation request as the current bump allocation context and then proceeding

with a bump allocation. The function that performs local line search is shown

in Figure A.8.

4. Global line allocation is attempted by searching the global free line linked list

using findFreeLines(s). If this succeeds, it returns the list of lines for the page

that had at least one line large enough to satisfy the current request. This is

set as the current page and allocation is retried; at this point, line allocation

within the current page (step 3 above) is guaranteed to succeed.

5. Page allocation is attempted by finding the next free page. If this succeeds, the

entire payload of the page is set as the current bump allocation context. If this

fails, then the allocation fails.
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Figure A.9 shows the allocation algorithm used in CMR. Figure A.10 shows an as-

sociated helper function, which is used to relinquish a thread local allocation buffer if

it has been used up. This function unlocks the page and places it into the relinquished

(4) state, and makes the allocator ready to find another page for allocation. Placing

the page into the relinquished state indicates to the collector’s sweep algorithm that

allocations had been performed within the page during the collection. This prevents

the collector from attempting to sweep this page during this collection cycle.

A.5 Concurrent Object, Page, and Line Marking

CMR uses a marking loop that marks not only objects, but also pages and lines

within pages. This is performed as an optimization to reduce the number of memory

accesses that the sweep algorithm performs. Pages are marked using ptCas whenever

any object within the page is marked. This permits the sweep algorithm to rapidly

identify those pages that are entirely free and immediately mark them for reuse using

addFreePage, without having to perform further inspection of page contents. The

line of memory within a page corresponding to each live object is marked by using

pageBitsSet. This allows the sweep algorithm to rapidly create free lines for those

pages that are neither completely full nor completely empty without having to scan

the page payload, which is 32× larger than the page bits in the header.

Object marking proceeds as in either CMR-rotating and CMR-quickstore. Page

and line marking is hooked into the marking loop itself: when an object is dequeued

from the worklist, the page associated with it is marked and then the line associated

with the object is marked. This phase of marking is called shading, and is imple-

mented by the shadeObject(o) function shown in Figure A.11. This function uses an

object-oblivious helper shadeBlock(base,len), which shades any region of the page sur-

rounding base that has length len. This function first shades the page by flipping its

state from populated (2) to shaded (3). If the state was not previously 2 then the

state is unchanged. If it was 2, then the page bits are reset, since they may have
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shadeBlock(base,len) =

loop

pageState ← ptGet(base/pagesize)

if pageState = 2

if ptCas(base/pagesize, 2→3) = 2

foreach l in

[base/pagesize∗pagesize+pageheadsize,

base/pagesize∗pagesize+pagesize−1]

pageBitsSet(l, false)

break

else

break

if pageState = 2 or pageState = 3

foreach l in [base, base+len−1]

pageBitsSet(l, true)

shadeObject(o) =

shadeBlock(o,size(o))

Figure A.11: Helper function for shading the page and line associated with an object.

still contained bit values from the previous collection cycle. The line associated with

the object is then shaded by setting the appropriate page bits, but only if the page

state was either populated or shaded. Other page states correspond to large objects

(whose pages are locked), objects within pages currently used for allocation, and ob-

jects within pages that were relinquished by some thread during this collection. In

any of those cases, the page bits need not be set because either the page will not be
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swept during this collection cycle, or sweeping will be done using the separate large

object sweep.

A.6 Concurrent Page and Line Sweeping

The sweeping algorithm for pages and lines is designed to rapidly identify entirely

empty pages, and free lines within those pages that are neither completely full nor

completely empty. The sweep algorithm considers all pages in P , and performs actions

depending on the page’s state:

1. Locked: if the page is locked then the sweep algorithm does nothing.

2. Populated: populated pages get freed. This includes clearing any free lines that

the page may have and setting the page’s state to free (5).

3. Shaded: shaded pages are swept for lines but otherwise not freed. Line sweeping,

shown in Figure A.12, finds contiguous unset bits in the page bits in the header.

Each such region is turned into a free line if it is large enough to hold the 4-

location free line structure. This may fail if the user had allocated a zero-length

object, which only takes 3 locations. In practice this condition is prevented by

rounding up allocations that are too small to the size of the free line structure.

The free lines found within the shaded page are then added to the global free

line list, and the page state is set to populated (2).

4. Relinquished: do nothing. Relinquished pages are turned into populated pages

in the post-sweep.

5. Free: do nothing.

The complete sweep algorithm is shown in Fig. A.13. To minimize the amount of

time that the collector spends in atomic sections, the populated/shaded sweep cases

are handled by first setting the page state to locked (1). This ensures that even if

the page had free lines and the application attempts to remove those free lines in
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sweepLinesInPage(page) =

lastFreeLine ← 0

firstFreeLine ← 0

l ← o/pagesize+pageheadsize

while l ≤ o/pagesize∗pagesize+pagesize−1

if pageBitsGet(l) l ← l + 1

else

lend ← l

while not pageBitsGet(lend) lend ← lend + 1

if lend − l ≥ 4

lineSizeSet(l, lend − l)

linePrevSet(l, 0)

lineNextSet(l, firstFreeLine)

if firstFreeLine = 0

lineLastSet(l, l)

lastFreeLine ← l

else

linePrevSet(firstFreeLine, l)

lineLastSet(l, lastFreeLine)

firstFreeLine ← l

l ← lend + 1

atomic

pageLineSet(page, firstFreeLine)

lineNextSet(lastFreeLine, freeLineHead)

if freeLineHead 6= 0 linePrevSet(freeLineHead, lastFreeLine)

freeLineHead ← firstFreeLine

ptSet(page, 2)

Figure A.12: Helper function for sweeping lines within a page.
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sweepPagesAndLines() =

foreach page in P

loop

if ptCas(page, 2→1)

removeFreeLines(page)

addFreePage(page)

break

elsif ptCas(page, 3→1)

removeFreeLines(page)

sweepLinesInPage(page)

break

elsif ptGet(page) = 1 or ptGet(page) = 4 or ptGet(page) = 5

break

postSweep() =

foreach page in P ptCas(page, 4→2)

Figure A.13: Helper functions for sweeping pages and lines.

findFreeLines(n), it will fail to do so and attempt to find a different page. Fig. A.13

also shows the postSweep() function, which is invoked at the end of collection to turn

all relinquished pages into populated pages.

A.7 Concurrent Large Object Sweeping

Large objects are swept separately from pages and lines. Large objects are tracked

by the collector using a large object header linked list. As far as the page and

line management portion of the collector is concerned, large object pages are locked
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sweepLargeObjects() =

atomic

curLOH ← lohHead

lohHead ← 0

newLOHHead ← 0

newLOHTail ← 0

while curLOH 6= 0

next ← lohNextGet(curLOH)

if flag(curLOH) 6= fM

foreach page in

[curLOH/pagesize,

curLOH/pagesize+lohNumPages(curLOH)−1]

addFreePage(page)

else

lohNextSet(curLOH, newLOHHead)

newLOHHead ← curLOH

if newLOHTail = 0

newLOHTail ← curLOH

curLOH ← next

if newLOHHead 6= 0

atomic

lohNextSet(newLOHTail, lohHead)

lohHead ← newLOHHead

Figure A.14: Helper function for sweeping large objects.
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(1). Sweeping large objects is uncomplicated because there are guaranteed to be few

large objects. Precisely, there will be fewer large objects in the heap than there are

pages, since each large object must be larger than the page payload size. The large

object sweep algorithm is shown in Fig. A.14. This algorithm minimizes the length of

atomic sections by stealing the large object linked list. While large object sweeping

is in progress, the collector is operating over its own private large object list, which

includes only previously allocated large objects. In the meantime, the application

may start populating the global large object list by allocating new large objects.

Objects allocated during the sweep are never deleted. After the large object sweep is

complete, the collector prepends its modified large object list to the global one.

A.8 Transformations

CMR uses Store and Load transformations that subsume both CMR-rotating and

CMR-quickstore based on the quickstore compile-time flag. CMR has a different Alloc

transformation, which leverages the allocRaw(n) helper function. The transformations

used by CMR are shown in Figure A.15.

A.9 Collector Thread

The CMR collector thread proceeds similarly CMR-rotating and CMR-quickstore.

It uses the compile-time quickstore flag to determine if thread roots need to be res-

canned during the marking loop, which is necessary when the CMR-quickstore opti-

mization is in use. Other changes are introduced to accomodate page and line mark-

ing, high-performance sweeping of pages, lines, and large objects, and post-sweeping

of relinquished pages. The collector thread is shown in Figure A.16.
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Store(o,i,v) →

if not quickstore

w ← rd(location(o,i))

mark(w, W [self])

mark(v, W [self])

wr(location(o,i),v)

v ← Load(o,i) →

v ← rd(location(o,i))

o ← Alloc(n,v) →

l ← allocRaw(len2size(n))

wr(l,fA)

wr(l+1,0)

wr(l+2,n)

foreach i in [0,n−1]

wr(location(l,i),v)

return l

Figure A.15: The transformations used by CMR.

A.10 Page Layout Optimizations for Schism

CMR’s heap structure involves reserving a header in each page for free line and

page bits management. Page bits are used in the shadeBlock(base,len) function to

identify those regions of a page that are in use by shaded objects. Each bit rep-

resents a single memory location. But in both Siebert/cmr and Schism/cmr,

fragments are either entirely free or entirely in use since all object sizes are rounded

up to the fragment size. This permits the page bits to be compacted, which makes

the header smaller and accelerates the sweep. The pageheadsize can be reduced to

(pagesize+256)/257, or 5 locations, on a 32-bit system if fragsize = 8. The page header

size is always rounded up to the fragment size to maintain alignment, leading to
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loop

ragged safepoint t in T nop

fM ← !fM

ragged safepoint t in T nop

phase ← 2

ragged safepoint t in T nop

phase ← 3

fA ← fM

ragged safepoint t in T nop

ragged safepoint t in T

foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

while W .head 6= 0

while W .head 6= 0

s ← dequeue(W )

shadeObject(s)

foreach d in refs(s) mark(d, W )

ragged safepoint t in T

if quickstore foreach r in roots(t) mark(rd(r), W [t])

atomic transfer(W [t]→W )

phase ← 4

sweepPagesAndLines()

sweepLargeObjects()

phase ← 1

postSweep()

Figure A.16: The CMR collector thread.
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pageBitsSet(l, v) =

p ← l/pagesize

o ← l−p∗pagesize−pageheadsize

w ← rd(p∗pagesize+1+o/fragsize/locationbits)

if v = true

w ← w | (1<<((o/fragsize)%locationbits))

else

w ← w & ˜(1<<((o/fragsize)%locationbits))

wr(p∗pagesize+1+o/locationbits, w)

pageBitsGet(l, v) =

p ← l/pagesize

o ← l−p∗pagesize−pageheadsize

w ← rd(p∗pagesize+1+o/fragsize/locationbits)

if w & (1<<((o/fragsize)%locationbits)) 6= 0

return true

else

return false

Figure A.17: The Schism/cmr page bits management functions optimized for frag-

mented objects.

pageheadsize = 8 on 32-bit systems with fragsize = 8. This section shows changes to

the page management, shading, and sweeping code to optimize for objects whose

size is always a multiple of fragsize. The modified page bits functions are shown in

Figure A.17, the modified block shading function is shown in Figure A.18, and the

modified sweeping function is shown in Figure A.19. The only changes to these func-

tions from the basic CMR are that offsets into a page are divided by fragsize before
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shadeBlock(base,len) =

loop

pageState ← ptGet(base/pagesize)

if pageState = 2

if ptCas(base/pagesize, 2→3) = 2

foreach i in [0, (pagesize−pageheadsize)/fragsize−1]

pageBitsSet(base/pagesize∗pagesize+pageheadsize+i∗fragsize, false)

break

else

break

if pageState = 2 or pageState = 3

foreach i in [0, len/fragsize−1]

pageBitsSet(base+i∗fragsize, true)

Figure A.18: The Schism/cmr block shading function optimized for fragmented

objects.

computing which of the page bits to set or get. Likewise, the line sweep is changed

to procceed in steps of fragsize.
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sweepLinesInPage(page) =

lastFreeLine ← 0

firstFreeLine ← 0

l ← o/pagesize+pageheadsize

while l ≤ o/pagesize∗pagesize+pagesize−1

if pageBitsGet(l) l ← l + fragsize

else

lend ← l

while not pageBitsGet(lend) lend ← lend + fragsize

lineSizeSet(l, lend − l)

linePrevSet(l, 0)

lineNextSet(l, firstFreeLine)

if firstFreeLine = 0

lineLastSet(l, l)

lastFreeLine ← l

else

linePrevSet(firstFreeLine, l)

lineLastSet(l, lastFreeLine)

firstFreeLine ← l

l ← lend + 1

atomic

pageLineSet(page, firstFreeLine)

lineNextSet(lastFreeLine, freeLineHead)

if freeLineHead 6= 0 linePrevSet(freeLineHead, lastFreeLine)

freeLineHead ← firstFreeLine

ptSet(page, 2)

Figure A.19: The Schism/cmr helper function for sweeping lines optimized for frag-

mented objects.
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