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Abstract
As garbage collected languages become widely used, the quest
for reducing collection overheads becomes essential. In this paper,
we propose a compiler optimization called path specialization that
shrinks the cost of memory barriers for a wide variety of garbage
collectors including concurrent, incremental, and real-time collec-
tors. Path specialization provides a non-trivial decrease in write-
barrier overheads and a drastic reduction of read-barrier overheads.
It is effective when used with collectors that go through various
phases each employing a different barrier behavior, and is most ef-
fective for collectors that have an idle phase, in which no barrier
activity is required. We have implemented path specialization in the
Bartok compiler and runtime for C# and tested it with state-of-the-
art concurrent and real-time collectors, demonstrating its efficacy.

Categories and Subject Descriptors D.1.5 [Object-oriented Pro-
gramming]: Memory Management; D.3.3 [Language Constructs
and Features]: Dynamic storage management; D.3.4 [Proces-
sors]: Memory management (garbage collection); D.4.2 [Storage
Management]: Garbage Collection

General Terms Algorithms, Design, Performance, Reliability

1. Introduction
Garbage collection is widely acknowledged for speeding up soft-
ware development while increasing security and reliability. Garbage-
collection has been incorporated into modern popular languages
such as C# and Java. Recent advances in the development of ad-
vanced garbage collectors, such as concurrent (non-intrusive), par-
allel, and real-time collectors have further increased garbage col-
lection use in modern computing. The popularity that garbage col-
lected environments are gaining makes the task of reducing garbage
collection overheads highly desirable.

In this work, we propose a method for optimizing a variety of
garbage collectors, without any need for system or hardware sup-
port. Our method is aimed at reducing the overheads induced by
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memory barriers and is operated by modifying the compiler’s code-
generation component. Memory barriers induce high overheads
ranging up to 60%, depending on the platform used, the function
the barriers perform for the memory management component, and
the benchmark [6, 23]. Memory barriers of many collectors change
their behaviors according to phases in the execution of the collec-
tor. In particular, many collectors employ a very efficient barrier
(or no barrier at all) while they are idle, and a more demanding bar-
rier operation while active. Selecting the mode of operation cannot
be done at compile time, because the times at which the collector
is idle and active are determined only during program execution.
Therefore, such barriers contain code that determines which oper-
ations to execute according to the collector phases. In particular,
checks are executed even when the barrier is not required to do
anything useful in the current collector phase.

We propose to use path specialization in order to reduce the bar-
rier overheads by reducing the amount of work required for phase
checks. This reduces the amount of computation required, allows
better register allocation, reduces the load on branch prediction
resources, and improves code cache behavior. Path specialization
starts with code cloning, creating multiple copies of the program
code, and then modifying each copy to handle one or more phases
of the collector. Since each specialized code version is restricted to
being executed in only a subset of the possible phases, the checks it
has to perform in order to determine the current phase and what to
do in this phase can be reduced. In particular, if a specialized code
version is only executed in the idle phase, for which no barrier ac-
tion is required, the barrier code can be entirely eliminated in this
specialized code version.

It remains to specify how the control is transferred from one
copy of the code to another. Timely transfer of control is crucial,
because threads must respond to phase changes of the garbage col-
lector in a timely manner, allowing the collector to perform its task.
This causes transfers between specialized paths to become more
complicated. We propose a simple method for code generation of
appropriate control transfer that avoids the use of specialized static
analysis. The modifications to the compiler and runtime that are
needed by the the proposed path specialization method are mini-
mal.

Using code duplication, specialization and transferring control
back and forth between various specialized versions of the input
code is a technique that was also used in a different context for
bursty program tracing or sampling [1, 16]. Our method can be
viewed as importing and adapting these techniques to the memory
management world to achieve an important overall reduction on
memory barrier overheads. In addition, we propose a simple com-
piler technique for reducing the code size increase without requir-
ing a specialized static analysis.



We have implemented path specialization in the Bartok com-
piler and runtime, and tested it with several important garbage col-
lectors. Our measurements show a shrinkage of the barrier costs
with dramatic improvements of up to 45% in overall application ex-
ecution time for collectors that employ a read-barrier and nice im-
provements of up to 5% for collectors that employ a write-barrier.

Our contributions can be summarized as follows.

1. A proposed optimization of memory barriers for memory man-
agement that is suitable for a variety of garbage collectors, and
maybe usable for other overheads in various systems.

2. A simple method for reducing the code size increase. This
method can be easily implemented, it does not require a spe-
cialized compiler analysis, and it is very effective.

3. An implementation and measurements of the proposed method
with several relevant memory barriers, employed by state-of-
the-art garbage collectors.

Although we propose and examine these techniques in the con-
text of reducing the overheads of garbage-collected environments,
there may be an interesting potential for pushing these techniques
and generalizing them further for other overheads added with mod-
ern language implementations and measurements, e.g., trace moni-
tors.

Organization. We start with a short background on garbage col-
lectors and memory barriers in Section 2. In Section 3 we describe
the path specialization basics concentrating on intra-procedural op-
timization. Inter-procedural and further optimizations are discussed
in Section 4. The implementation is described in Section 5 and
measurements are reported in Section 6. Related work is discussed
in Section 7 and we conclude in Section 8

2. Garbage Collection Barriers and Phases
Many garbage collectors, such as concurrent, incremental, and real-
time collectors, require that special code is executed during pointer
modification or load. Some collectors even incur an overhead on
any memory access (not only for pointers). Such code is called a
memory barrier. A write-barrier is a piece of code that is executed
with each write (usually this refers to pointer modifications only)
and a read-barrier is a piece of code that is executed during each
memory load.

Memory barriers are required for different reasons. For ex-
ample, concurrent mark-sweep garbage collectors trace the set of
reachable objects, while the program threads concurrently mod-
ify pointers in them. Unless compensated for, such pointer changes
may foil the trace of the heap yielding wrong conclusions about the
set of reachable objects. A write-barrier is typically used by con-
current and incremental collectors to allow cooperation between
the program and the collector and guarantee that the collector cor-
rectly identifies all live objects. Such cooperation between the pro-
gram and the collector is only needed during the collector’s tracing
phase.

Each program thread must cooperate with the collector accord-
ing to the collector phase. Unless the program threads are halted to
simultaneously acknowledge a phase change, the various threads
notice a collector phase change at different times. On-the-fly col-
lectors allow such latitude in threads’ cooperation in order to avoid
halting all threads simultaneously. The points in execution in which
threads must notice a phase change are called safe-points or GC-
points. Path specialization attempts to take advantage of this lat-
itude by checking the phase once in a safe-point and then avoid
repeated checking on each memory barrier.

Real-time collectors typically employ a compacting mechanism
in order to avoid unexpected fragmentation. To preserve real-time

properties, the compaction is run incrementally [4, 3] or concur-
rently [17, 9, 23]. Often, such concurrent copying requires a read-
barrier to be introduced. The cumulative cost of a read-barrier
is typically higher than that of a write-barrier, and therefore our
method often shows even more drastic improvements when ap-
plied to collectors that employ a read-barrier. Many incremental
and concurrent collectors are known today, and practically all of
them use phases and can make use of path specialization, see for
example [25, 10, 20, 22, 7, 12, 11, 13, 14, 24, 9, 21, 2, 5, 23].

3. Path Specialization
Consider a collector that goes through phases and for which the
behavior of a memory barrier depends on the phase. The simplest
implementation, and one that is used by almost all collectors, is
to start the memory barrier by checking what is the current phase
and then executing the relevant barrier code for that phase. These
checks require repeated computational effort, they use branch pre-
diction resources, and they pollute the code cache. Path specializa-
tion attempts to substantially reduce the need for phase checks.

The basic idea is to clone code fragments at the IL level and
then create specialized versions of the code which use barriers that
are valid for only a partial set of the possible phases. Typically, one
would partition the set of possible phases into disjoint subsets and
create specialized versions of the code for each of these subsets.
The simplest partition, and one that is sensible to use, is the one
that specializes one code version for handling the idle phase and
uses another version to handle all other phases. Typically, a code
version that only executes the idle phase has no barrier code at all,
making it very efficient.

Given the general idea of executing code specialized for garbage
collector phases, we must deal with the question of how to guide
the threads to use the appropriate code at all times. In practice,
we cannot expect an automatic costless mechanism that switches
execution from one version of the code to the other when the col-
lector changes the phase of the execution. While dealing with this
issue, we will also make an attempt to avoid excessive duplication
of code, as much as possible.

Garbage collection phase changes are typically only required
to be recognized by the mutator threads at specific program code
locations denoted safe-points. Essentially, we will perform phase
checks after safe-points and use the information obtained by the
check in all memory barriers until the next safe-point occurs. Path
specialization is most likely to be useful when memory barriers
occur much more frequently than safe-points, as we move phase
checks out of the barriers and towards safe-points locations. The
question is how to take advantage of this in practice.

For simplicity of presentation, we start by describing a naı̈ve
strategy for transferring control from one path to the other. This
strategy may require the use of static dominance analysis in order to
obtain good performance. The naı̈ve method is described in Section
3.1. Next, in Section 3.2, we describe our preferred method, which
is much simpler and is easy to incorporate into a compiler, with no
need for any specialized static analysis. If the compiler performs
trivial dead-code elimination (and most compilers do), then it will
generally perform as well as or better than the naı̈ve method.

3.1 The Naı̈ve Approach

Assume we have two versions of the code, each specialized for dif-
ferent subsets of the possible phases. In order to perform the control
transfer between the two specialized code fragments, a phase check
operation is added after each safe-point in both specialized code
versions. Following the phase check, a conditional branch trans-
fers the flow to the appropriate point in the appropriate specialized
code. Execution continues in the chosen code version until the next
safe-point or method call.
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Figure 1. A simple code fragment, including instructions that run
a memory barrier and instructions that don’t, a conditional branch,
and two safe-points.

This simple method is depicted in Figures 1 and 2(a). Figure
1 shows a program fragment with a safe-point, and then some
instructions (two of them include a memory barrier) followed by
a second safe-point and finally a simple subsequent instruction.
The legend of the various nodes appear in this drawing. Figure 2(a)
depicts the same code fragment when specialized according to the
naı̈ve method. The code is cloned and two specialized versions are
created. In addition, after each safe-point there is a phase check and
a jump to the appropriate specialized path.

The simple scheme above causes a significant increase in code
size. Each program point in the original code will have a corre-
sponding program point in each specialized code version. The code
is expected to essentially double in size. The problem is that there
is a lot of code that is duplicated without being specialized and
some of this duplication can be avoided. In particular, all code that
appears after a safe-point and before the next memory barrier(s) is
exactly the same in both specialized code versions. The same holds
for all code prior to a safe-point and after the last preceding barrier
operation(s).

A simple solution for eliminating this redundant duplication
is to unconditionally transfer control from all code versions into
one predetermined “main” code version that executes all the code
sequences which are known to be equal in all versions. In particular,
before reaching any safe-point, control is transferred into the main
code version, and it keeps on executing in that version until arriving
at the first memory barrier. At that point, a conditional branch
transfers execution to the appropriate specialized version. After
the first memory barrier, execution can continue uninterrupted in
all specialized versions (including the main version) until the next
safe-point.

This seems simple enough. However, the execution paths be-
tween safe-points and subsequent memory barriers are not neces-
sarily simple. It is possible that a branch appears after a safe-point
and several code paths fork out before a memory barrier appears in
any of them. Similarly, at a merge point of multiple paths, mem-
ory barriers may or may not have occurred on all paths from a safe
point. Therefore, finding the “first” memory barriers after a given
safe-point, and not adding redundant tests to memory barriers that
are not “first” in the main version, requires a static analysis that
resembles a dominance analysis. While this is certainly doable, a
simpler approach may be preferable. Our approach will not need

to compute or use previously computed information by the com-
piler. Instead, it will only assume that the compiler runs a dead-
code elimination procedure, and treat this procedure as a black box.
In what follows, we describe our preferred method that enjoys the
optimization discussed above without employing any specialized
static analysis.

3.2 The Path Specialization Method

The keys ideas of the preferred path specialization method are:
(1) add an additional main code version that is responsible for
performing all the phase checks, (2) add a phase check before every
barrier (not only the first one) in the main code version, (3) transfer
control to the main code version near safe-points, and (4) use dead
code elimination to perform the trimming of irrelevant conditional
branches.

Assume as given a requirement for a memory barrier (either
a read- or a write-barrier or both) which varies according to m
different program phases. The program phase may dynamically
change during the execution of the program and must be recognized
no later than when control reaches well-defined safe-points in the
program code. The first step is the partitioning of the set of m
phases into any n subsets, S1, . . . ,Sn, where 2 ≤ n ≤ m, and design
a specialized barrier for each of the subsets. On one extreme, each
phase is represented by a distinct specialized version and n = m. On
the other extreme, which is the simplest and a very effective design
choice, we have n = 2 with one barrier version handling the idle
phase (or the one with the smallest overhead) and the other barrier
version handling all the other phases.

In our method of choice, we start by creating n + 1 versions
of the code. The first version (version 0) handles all common
code and branches into the specialized versions of the code. This
version of the code employs the original memory barriers and is
called unspecialized. (As will become clear later, memory barriers
will never be handled by this code version, so having no barriers
at all will do as well.) There are n more versions of the code.
The i-th version of the code contains a specialized barrier code
that is specifically designed to handle only the phases that belong
to the i-th subset of phases, Si, plus additional code to transfer
control back to version 0, when necessary. A decision function
supplied by the developer examines the current phase and decides
the number i of the code version that should be executed. The code
for control transfer is automatically inserted into the code copies by
the compiler, as explained below. The decision function and each
of the specialized barriers to be used in the i-th specialized version
of the code (for each 1 ≤ i ≤ n) should be written by the garbage-
collector designer.

We propose an intra-procedural path specialization, and discuss
additional inter-procedural optimizations in Section 4.1. Assume
we are given the code for a method and need to specialize it. The
compiler starts by creating n additional extra copies of the code. In
each of the n copies, the corresponding specialized barrier replaces
the general barrier. In the original code, just before any memory
barrier, we insert code that computes the decision function P and
according to the resulting i jumps to the i-th code version. Note that
this is performed for all memory barriers and not only for the first
barrier after a safe-point. Thus, no analysis is required. This may
seem wasteful, because we only need to branch at the first barrier(s)
following a safe-point, but this waste will be eliminated later. In the
specialized code, the barriers are not modified with any branches.
They are set to the specialized barriers given by the developer.

The compiler then goes over the safe-points in all specialized
paths and just before each safe-point, it installs an unconditional
branch into the main code version (number 0), so that safe-points
will only run on the main code version.



Specialized 1 Specialized 2

(a) The code fragment from Figure
1, specialized according to the naı̈ve
method. Two clones of the code are
generated and each is specialized for
a subset of the phases. A phase check
is added after each safe-point and
a branch to the adequate specialized
code path follows.

Unspecialized Specialized 1 Specialized 2

(b) The code fragment from Figure 1 with our path
specialization method applied. An unspecialized
version runs code between the safe-point and the
first barrier. A phase check transfer controls to the
appropriate specialized code version before each
barrier. A branch back to the unspecialized version
is added before each safe-point. Part of the gener-
ated code is actually dead code that can be elimi-
nated.

Unspecialized Specialized 1 Specialized 2

(c) The code fragment from Figure 2(b) after per-
forming dead-code elimination. Dead code is de-
picted as opaque nodes and edges.

Figure 2. The code fragment from Figure 1 specialized using the various methods from Section 3.

The simple steps described above, are the only steps required to
make the code work with path specialization. However, these steps
will cause the creation of a significant amount of unreachable code.
In particular, the original code is only used to jump into the cloned
specialized paths prior to barriers after a safe-point, so the rest of its
code is redundant. Eliminating dead code is a simple optimization
that exists in most compilers and can be easily used to remove the
non-relevant parts of this scheme. Thus, without any new required
analysis, we get decently optimized code for path specialization.

This path specialization method is depicted in Figures 2(b) and
2(c). Figure 2(b) shows the cloning of the original code for n = 2.
Two specialized code versions are created plus one unspecialized
version. After each memory barrier in the unspecialized code, a
phase check transfers control to one of the specialized code ver-
sions. Control returns to the unspecialized version uncondition-
ally before any safe-point. Figure 2(c) depicts a clean version of
the obtained code after dead code elimination has been performed.
The dead code appears in this figure as semi-transparent nodes and
edges. Note that much of the code is removed during dead code
elimination.

In order to specify this algorithm more rigorously, we have to
specify what a safe-point is. As mentioned earlier, a safe-point is
a point in which the phase as viewed by a thread may change. For
garbage collection, this usually means that the program thread is
willing to cooperate with the garbage collector via some handshake
mechanism, or by having all the relevant information ready for a

collector inspection. The cooperation usually happens in one of two
different approaches. In one approach, the program thread actively
checks “once in a while” (i.e., in a safe-point) whether it needs
to cooperate with the collector. The safe-point in this case is such
runtime cooperation code that is executed between two program
instructions. The other standard approach is to let the collector
signal the program threads and halt them during execution. The
threads may only be stopped at safe-points, where in this case,
safe-points are points in between two program instructions that
contain no specific code; what makes them safe-points is the fact
that they are considered safe to stop the threads at. In the rest of this
paper, we will think of a safe-point as a point between two program
instructions, where cooperation may occur.

In path specialization, we have to pay special attention to
method calls. When a method is called, a phase change may happen
while the method code is executing, and so after returning from the
method, we may need to change the code version that is being used.
Thus, at the point after a method call, we want to make sure that we
handle a phase change if one has occurred. To be on the safe side,
we ensure that we are in the general/main code version just before
calling the method. This means that we will also return to the gen-
eral code version after returning from the method. In the main code
version we will check the phase and jump to the appropriate code
version prior to executing any barrier code. We will later relax this
conservative approach by employing inter-procedural analysis and



actually check if a phase may change in a routine.1 Similar con-
sideration should be given to returning from native code, or when
waking up from waiting on some event, since the phase might have
changed since the last phase check. These cases can be handled
in the same manner as method calls are handled and we do not
explicitly discuss them further.

The code generation discussed above is specified in Algo-
rithm 1. We assume that a program phase change must only be
recognized at well-defined safe-points. We also assume that the de-
signer has partitioned the phases into n subsets and has distilled the
specialized barrier for each of the sets. Finally, we assume a test
code that, given a phase number, tells which code version should
be used, i.e., returns a number i, 1 ≤ i ≤ n.

Algorithm 1 : Code Generation for Path Specialization

1. Clone the code. Clone the entire code n times, marking the
original code as un-specialized, and each clone with an index
i, 1 ≤ i ≤ n. Maintain a mapping Clone(i, j) which maps the
pair (i, j) to the j-th instruction in the i-th clone. The un-
specialized code is the 0 clone for this mapping.

2. Partition basic blocks before a safe-point. For each safe-point
appearing after instruction j in any of the clones, split the basic
block just after instruction j, and create a jump after instruction
j into the un-specialized code at location Clone(0, j + 1). The
point before the jump in the cloned code is not regarded as
a safe-point anymore. The point after the jump and before
executing Clone(0, j+1) in the un-specialized code is regarded
as a safe-point. (This may mean an actual runtime cooperation
code or just declaring that it is safe for the collector to pause the
thread execution.)

3. Jump to the un-specialized code before calling a method.
Treat the point of execution that precedes a method call as a
safe-point and apply the operation in the above step for each
method call.

4. Insert jumps towards specialized paths. Go over all memory
accesses in the code (that require a barrier). Suppose instruction
j is such a memory access. For all code clones i, split the basic
block just before instruction j. In the un-specialized code insert,
just before instruction j, a phase selection test and a jump to
the instruction Clone(i, j), where i is the result of the selection
test. In all clone codes keep the original flow of execution by
inserting a jump from the first part of the basic block to the
second.

5. Remove dead code. Run a control flow graph simplifier (or
take special care) to remove all cloned code prior to the first
memory access after a safe-point (or after method entry). Un-
cloned code for which equivalent cloned code is always run
(between a memory access and the following safe-point) should
also get eliminated.

A Remark about Inlining. We assume that path specialization
will be performed after the bulk of application code inlining.
Method calls inlined after path specialization will result in a poten-
tially unnecessary jump back to un-specialized code followed by
an unnecessary phase selection test. The unnecessary jump back to
un-specialized code is inserted by our algorithm prior to the soon-
to-be-inlined method call; the unnecessary phase test will occur in

1 We assume that all methods have a single entry point and that method calls
will always return to a specific code point (unless the method terminates due
to a thrown exception).

the first memory accessing basic block of the soon-to-be-inlined
callee.

4. Optimizations
Several further optimizations may be used to improve performance
and reduce the code size of the code output by path specialization.

The techniques described in Section 3.2 above use dead-code
elimination to avoid specialized analysis, yet, still be able to join
code that follows a safe-point and precedes the first memory bar-
rier. However, for a code path that starts at a barrier and ends at
a safe-point and that does not contain any other barriers or safe-
points, the same code sequences will appear in all n specialized
versions of the original code (and will be identical to the code se-
quence in the original code). A more sophisticated algorithm for
path specialization could perform tail merging for such code paths,
in effect only creating the specialized code if doing so allows the
use of specialized barriers relative to the original code. Doing so as
part of path specialization requires some sophistication and some
specialized analysis because the code is not necessarily linear and
this part may contain several actual code paths. Alternatively, tail
merging may be done separately as a general compiler optimiza-
tion.

Various additional optimizations apply. To reduce code size
growth, we may decide to not clone code that is infrequently ex-
ecuted. Not optimizing such code will not harm the execution, but
not duplicating code may yield smaller code size. Similarly, we
may decide not to clone code that has a small number of mem-
ory barriers. Another possible optimization is to let some of the
work be done on the original code before cloning, thus, avoiding
repeated work on the clones. For systems in which back-branches
are safe-points, loop unrolling may be used to place safe-points fur-
ther apart. An optimization that we have implemented is to have the
basic block scheduler place block associated with slow paths sep-
arately, which has two consequences: first, fast path execution has
better locality; and second, jumps to unspecialized code from fast
path code are often elided, because the scheduler can juxtapose the
blocks.

In what follows, we concentrate on inter-procedural optimiza-
tions. We stress that even without all these optimizations, path spe-
cialization yields dramatic improvements, as demonstrated in the
measurement section below.

4.1 Inter-procedural Path Specialization

In Section 3, all method calls were considered potential safe-points.
In particular, it followed that upon return from a method, control re-
turned to the original code, or a check was made to determine which
specialized path should be taken at this point. This is due to the con-
servative assumption that the called method (or one of the methods
it calls, etc.) may contain a real safe-point, and then a phase change
may occur, dictating a change in the selection of the specialized
path in all methods on the callstack. Hence, in our conservative ap-
proach, when returning into a method, the phase selection must be
rechecked. A code reachability analysis can be used to determine if
any code reachable during the method call actually contains a real
safe-point. If a real safe-point is not reachable during the call, the
execution may proceed in the specialized path upon call to (and re-
turn from) the method execution, knowing that the collector phase
has not changed. That can be simply done by calling the original
method from the specialized path and then the return address will
direct execution to the specialized path again. In this simple im-
plementation, at entrance to the method, a check of the phase will
still happen, directing the execution inside the method to the ap-
propriate specialized version. But no check will be required at the
exit.



To save the entry check as well and remain in a specialized
version through the execution of the method (from which a safe-
point is not reachable), that method itself may be specialized into
n different methods. Each of the method versions handles a subset
of the phases, rather than just having a single method body that
contains various specialized versions of the code. The specialized
versions of the code containing calls to such methods may then
have the calls modified to directly call the appropriately specialized
methods.

Alternatively, if the compilation environment supports methods
with multiple entry points, a method may be specialized to have an
original entry point plus up to n specialized entry points. Method
calls in specialized code fragments may then be modified to call
the appropriate entry point in the specialized method. This can be
useful even when a safe-point does exist in the routine, avoiding
the phase check on method entrance. Having multiple entry points
is more advantageous than duplicating method codes because it
allows some degree of code sharing. Note that even though the
same code will be executed until the end, the return address will
still direct execution to the calling path, which may be a specialized
one.

Similarly, if the compilation environment supports multiple pos-
sible return addresses, then a method may be specialized to return
to different code points depending upon which phase the collector
is assumed be in at the end of the function.

The inter-procedural optimizations described above may be
added as desired or needed. A modification of the safe-point spec-
ification using a reachability analysis, and specialization of entire
methods, instead of just code inside the method, can be easily in-
corporated into the above algorithm. Using specialized entry and
exit points is also straightforward.

5. Implementation
We implemented the path specialization mechanism in the Bartok
compiler and runtime for C#, which has been developed at Mi-
crosoft Research. The Bartok compiler is an ahead-of-time com-
piler from CIL (or from C#) to native code.

The path specialization optimization has been implemented as
a general optimization stage independent of the actual barrier used.
The optimization stage assumes n = 2 (i.e., two specialized ver-
sions) and takes as arguments the specification of two barriers,
each of which is used to insert barrier code for two disjoint sub-
sets of garbage collector phases. Bartok operates at three IR levels:
CIL [15], followed by a three-address code IR, and finally a low-
level machine-dependent IR; path specialization is currently imple-
mented within the three-address code IR. Path specialization makes
the same safe-point assumptions as the Bartok runtime: namely,
safe-points are at memory allocation and native calls, and any op-
eration that leads to memory allocationor native calls. The spe-
cialized code is subjected to the compiler’s general optimization
framework, which includes dead code elimination. However, opti-
mizations such as tail merging and predicate hoisting are not part of
the optimization framework, so further code reduction is definitely
possible. We have also not used any inter-procedural optimizations
in our implemented version.

For each of the barriers we measured, two specialized barriers
were implemented, where one handles the idle path, in which no
barrier is required, and the other handles all the phases that are
not idle. We have run measurements for each of the three types of
barriers described below.

5.1 STOPLESS barriers

We first consider a heavy barrier used for an advanced real-time
garbage collector. The STOPLESS collector is a recent concurrent
real-time garbage collector that supports concurrent compaction,

i.e., objects can be moved while the program threads concurrently
are accessing or modifying them [23]. The collector employs read-
and write-barriers for accesses to both reference and non-reference
values. We denote this barrier by STOPLESS. We measure runs of
the standard collector, and also a version that does not compact the
heap and runs the garbage collector in the idle phase at all times.
The latter is denoted STOPLESS nocopy. In the idle phase, the write-
barrier described in Section 5.3 is used (as opposed to using any
barriers). STOPLESS is idle most of the time; see [23] for detailed
numbers of STOPLESS barrier activity.

5.2 Brooks barriers

Some incremental copying garbage collectors keep several versions
of objects while moving them and they use forwarding pointers in
each object to point at the latest version of the object. When access-
ing an object, it is costly to test whether an object has a forwarding
pointer or not, thus, a self pointer is added to the latest version of
each object. This way, following the forwarding pointer guarantees
access to the latest object copy. A Brooks barrier employs an extra
level of indirection on references. In the presence of null reference
values for which it is not possible to use a forwarding pointer, a null
check and branch may be necessary, but this test-and-branch code
will only be used for reading of reference values rather than for all
heap accesses. Dereferencing the forwarding pointers can be done
using an early-update or a lazy-update strategy or using hybrids of
the two.

The early-update strategy maintains the invariant that local
and temporary variables are always updated with pointers to fresh
copies. Pointers on the heap may contain references to stale copies
of objects, but upon reading a reference from the heap, the program
will dereference the forwarding pointer to obtain a reference to the
representative memory block. The early-update strategy relies on
the collector to update all pointers on the runtime stacks of muta-
tor threads whenever objects are relocated. This is not a practical
option for a concurrent collector that must update all thread stacks
just after relocating each object.

Using the lazy-update strategy, local and temporary variables
may contain references to non-representative memory blocks. Any
read or write access of an object field using a reference may need
to dereference the forwarding pointer before accessing the memory
representing the field value. This option incurs a noticeable cost
because all heap accesses are indirect.

A hybrid option is usually the preferred choice in this case. If
forwarding pointers only change (or only have to be recognized
as being changed) at known program points (e.g., garbage collec-
tor safe-points), then program analysis may be employed to deter-
mine that some references can only point to representative memory
blocks and that dereferencing of the forwarding pointer is not nec-
essary. The hybrid method is dereferencing a pointer when it is first
accessed after a safe-point but not for subsequent accesses. Note
the difference from path specialization, which branches once for
all variables and does not need to perform an operation per vari-
able. Thus, path specialization can improve also this clever use of a
Brooks barrier, and it does, as will be shown in the measurements
section below.

The lazy-update dereferencing strategy was originally described
by Brooks [8], but all variants have subsequently been collectively
described as Brooks barriers.

The Bartok runtime does not include a garbage collector that
employs a Brooks barrier. However, the easy configurability of the
runtime allowed us to add various kinds of Brooks barriers to a non-
copying concurrent collector to allow us to measure the overhead
of these barriers in the case where all forwarding pointers are self-
pointers that point to the containing memory block. The barrier cost
in an actual copying collector, for which some of the references are



not self-pointing, are likely to be higher due to cache locality issues.
We denote by BROOKS the runs with a lazy-update barrier, and
by BROOKS SUNK the runs with the hybrid version of the barrier.
Note that because our collector never actually requires the Brooks
barrier, we run as if the copying was in the idle phase all of the
time.

5.3 A Concurrent Mark-Sweep style barriers

We also consider a write barrier of a concurrent mark-sweep col-
lector similar to the collectors in [12, 11, 13, 14]. We denote
the barrier employed in this collector the CMS (concurrent mark-
sweep) barrier. The concurrent collector maintains a snapshot-at-
the-beginning invariant and employs a write-barrier whose func-
tionality changes according to the collector phases. In the idle phase
the barrier does nothing. When the collector is active tracing the
heap, the write-barrier is used to ensure that a potentially discon-
nected part of the object graph is not going to be missed by the
collector. Except for a short time in the beginning of the collec-
tion, this barrier simply records referents whose pointing reference
is modified, for later use by the collector. Namely, before a pointer
is modified, the CMS barrier reads the memory word to be overwrit-
ten, and if it is a reference to an object that hasn’t been previously
noted by the collector, then the reference value is recorded in some
mark-stack, or by marking the object’s header, or both. In our im-
plementation, the referent is added to a linked list using a CAS
operation on a word in the object’s header.

The CMS barrier is active in the trace phase but not in the sweep
or idle phases of collection. See [23] for the percentage of time
that our concurrent mark-sweep collector spends in each of these
phases.

6. Measurements
To evaluate how path specialization affected the overhead of using
various barrier implementations, we ran a set of experiments using
the following barriers. First, we used the STOPLESS barriers in two
configurations of STOPLESS: a default one and one that does not
copy at all. Second, we checked two Brooks style barriers: the
lazy-update version and the hybrid version. Finally, we checked
the CMS barrier. We measured changes in execution time and code
size. The test programs for this evaluation are shown in Table 1.

The JBB program had been translated from Java into C# as
part of an unrelated project. The porting notes indicate that sev-
eral scalable data structures have been replaced with non-scalable
data structures, so the multiprocessor performance of this program
should not be compared with that of the original Java program.

All measurements have been performed on an Intel Supermicro
X7D88 dual x86 quad-core workstation running Microsoft Win-
dows Server 2003 R2 Enterprise x64 Edition at 2.66GHz with
16GB RAM. For each program, each configuration was run in se-
quence, and the sequence was repeated a total of 5 times. The me-
dian execution time was chosen as representative. The standard de-
viation around the median was generally less than half a percent for
the small programs, between 0.1 and 1.3 percent for sat, between
0.6 and 5.6 percent for lcsc, and between 0.3 and 3.8 percent for
Bartok.

6.1 Throughput Measurements

Figure 3 illustrates the overheads of each of the barriers. CMS
represent the write barrier of the concurrent mark-sweep collector.
Brooks represents the lazy-update Brooks-style barrier, and Brooks
sunk follows the forwarding pointers upon first use, and uses a data-
flow analysis to propagate the knowledge that the reference has
been forwarded in order to mostly avoid following a forwarding
pointer more than once. STOPLESS runs the barriers in the default
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Figure 3. Overhead of barriers: execution times when using the
barriers over execution times without executing the barriers.

collector configuration with object relocation, and STOPLESS no-
copy represents the barriers when compaction is never executed,
yielding a lighter barrier.

The overhead varies substantially between the benchmarks, be-
cause of the different frequencies of memory loads and stores.
Looking at the geometric mean, the overheads range between 10-
51%. These overheads are substantial and demonstrate the need for
path specialization.

In order to measure barrier overheads, one must be able to turn
them off during a run without crashing. For the Brooks-style and
STOPLESS no-copy barriers, we just switched them on and off,
without using a related collector. The unreachable objects were
reclaimed with the concurrent mark-sweep (CMS) collector. For
the STOPLESS barrier that does copy, we compared a run of the
barrier and the partial compactor to a run with no barriers and
no compaction. We believe that most of the overhead comes from
the barriers, and therefore comparing the copying and non-copying
runs shows mostly the overhead of the barriers. (Note that the
results are not much different from those in which the collector
does no copying at all.)

To measure the barriers of the CMS collector, we had to use a
more intrusive method, because running without the barriers makes
the collector miss objects during the trace, and the program later
crashes. In order to correctly collect the objects, we ran the col-
lector in three phases. First, the concurrent trace procedure marks
objects as usual. Second, in an extra phase, the collector stops all
threads and runs a stop-the-world tracing procedure. Finally, the
concurrent sweep is performed. The second phase was introduced
in order to ensure that the collector works correctly, even if the bar-
riers are not executed. This allowed us to measure execution times
with and without barriers in the first phase of the collector.

Next, we investigate the improvement in execution times when
using path specialization. Figure 4 shows the gains from using path
specialization. Higher is better, representing a higher ratio between
the time to run the original version and the time to run the path spe-
cialization version. On average, the overall execution times were
significantly reduced (around 30% reduction in execution times)
for STOPLESS, and nicely reduced (a 2-6% reduction) for CMS and
Brooks. For the Brooks barrier path specialization was effective on
average, but sometimes caused a decrease in performance. We sus-
pect that the branch prediction component might influence these
fluctuations, since the Brooks barrier avoids conditional branches
when possible. One can improve performance of path specialized



Benchmark Types Methods Instructions Objects Allocated KB Allocated Description
sat 24 260 19,332 8,161,270 171,764 SAT satisfiability program.
lcsc 1,268 6,080 403,976 8,202,479 426,729 A C# front end written in C#.
zing 155 1,088 23,356 12,889,118 928,609 A model-checking tool.
go 362 447 145,803 17,904,648 714,042 The commonly seen Go playing program.
xlisp 194 556 18,561 125,487,736 2,012,723 The commonly seen lisp implementation.
crafty 154 340 40,233 1,794,677 217,794 The Crafty chess program translated to C#.
Bartok 1,272 8,987 297,498 434,401,361 11,339,320 The Bartok compiler.
JBB 65 506 20,445 501,847,561 54,637,095 JBB ported to C#.

Table 1. Benchmark programs used for performance comparisons.
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Figure 4. The performance gains achieved by using path spe-
cialization for the benchmark programs and the different barriers.
Higher values mean higher gain and better performance when using
path specialization.

code by arranging the basic blocks appropriately; we have not at-
tempted such optimizations.

The overheads of the barriers when path specialization is used
are provided in Figure 5. The overheads are now between 7.5-18%
on average. The main outliers have been tamed. For example, the
crafty benchmark, whose STOPLESS overhead was 133%, is now
running with an overhead of 50% only. The STOPLESS overhead of
the go benchmark was reduced from 105% to 13%.

We note that the cost of the Brooks style barriers appears to be
higher in our measurements than one should expect from reading
Blackburn and Hosking’s evaluation of barrier costs [6]. However,
our measurements were performed on a machine with higher CPU
to memory performance ratio, thus increasing the cost of memory
operations, and using a compiler that does a better job of reducing
other costs via optimizations, thereby increasing the relative cost of
the barrier code.

We now move to the JBB program. This program runs several
times with different number of warehouses (which equals the num-
ber of threads executing). We report similar measurements for the
JBB program. Figure 6 illustrates the program performance for 1
to 6 warehouses when using the different kinds of barriers without
using path specialization. A higher ratio means a higher overhead.
Note that we did not include a check for CMS. The reason is that
adding a stop-the-world phase to a program with many threads has
a destructive effect on it, and in addition, we could not subtract the
effects of this phase for a program that measures throughput rather
than execution time. Looking at the other barriers, we see, again,
that the overhead is substantial (between 15-45% on average) and
optimizations are needed.
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Figure 5. Relative execution times for the benchmark programs
when using various barriers in conjunction with path specialization.
For all but the CMS collector, the execution times have been nor-
malized to the execution times of the programs when using a CMS-
style barrier without path specialization. For the CMS collector, the
execution times have been normalized against the no barriers case.
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Figure 6. Throughput overhead of the various barriers without
path specialization with the JBB program for various numbers of
warehouses.
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Figure 7. The relative performance gains due to path specializa-
tion measured with JBB for various warehouse numbers and the
different types of barriers.
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Figure 8. Throughput overhead of the various barriers with the
JBB program when path specialization is used with various num-
bers of warehouses.

Figure 7 shows the gains obtained by adding path specialization.
The average gains are between 1-19%, where the most substantial
gains are for the highest overhead barrier, the STOPLESS barrier.
Figure 8 provides the barrier overheads when path specialization is
used.

6.2 Code Size

The duplication of code fragments required to insert specialized
barrier operations may change the size of the code generated by
the compiler. In general, the code duplication is expected to cause
an increase in code size. Figure 9 shows how the use of path
specialization changed the size of the generated code for the used
barriers and benchmarks. (STOPLESS nocopy is not shown because
it is equivalent to STOPLESS for this measurement). The bars show
the ratio between the generated code with path specialization and
without it. Values higher than 1 mean that the code has expanded
when path specialization was applied.

For the two Brooks style barriers, the measurements indicate
around 57% increase in code size, as one may expect. Surprisingly,
for the CMS style barrier and the STOPLESS barriers, no substantial
code growth is observed. This is due in large part to the compiler
making different inlining decisions in the two compilation scenar-
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Figure 9. Relative size of generated code when using path special-
ization versus not using path specialization.
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Figure 10. Relative size of generated code without inlining when
using path specialization versus not using path specialization.

ios. Path specialization may increase the size of a methods, making
the compiler not inline them. Path specialization in some cases also
replaces multiple basic blocks on inlined barrier code with straight-
line code for inlined specialized barriers. Other factors may also
influence code size, such as register allocation, instruction schedul-
ing, etc.

The decrease in code size for the lcsc benchmark when using
the STOPLESS barriers is counter-intuitive and therefore we inves-
tigated it particularly. It is caused by the compiler choosing not to
inline sequences of method calls used for object allocation when
using path specialization. The benchmark is a compiler, which in-
cludes a parser. A substantial number of the parser methods include
a switch statement on string tokens, which the C# compiler imple-
ments by means of hashtables from strings to branch indices. The
hashtables are created and initialized upon first use. These methods
thus contain an unusual number of object creation statements. The
use of path specialization causes the compiler to choose not to in-
line the allocation methods due to a combination of the number of
object allocation statements in the method and an increase in the
size of the allocation code that was considered for inlining.

Although the code growth reported above is the one that will be
seen in practice, we also wanted to check the actual growth when
ignoring inlining effects. An illustration of the code growth while
avoiding compiler inlining is shown in Figure 10. This time, the
path specialization always has a cost. However, as can be seen,
due to the optimization proposed in this paper and maybe other
additional effects, the cost is not a doubling of the code (as it
would likely have been using the naı̈ve approach), but on average
it reaches 40% even when a read-barrier is used.

Compilation overheads. For the STOPLESS barrier, path special-
ization causes a significant reduction in the number of basic blocks
of methods due to eliminating phase checks. This has the inter-



esting effect that adding path specialization of this barrier actually
leads to a reduction of around 20% in overall compilation time.
Path specialization of the Brooks barriers leads to an increase in
compilation time of around 30%, while path specialization of the
CMS barriers often leads to a 10% decrease in compilation time.

7. Related Work
Using code duplication and specialization and transferring control
back and forth between various specialized versions of the input
code is a technique also used for bursty program tracing or sam-
pling [1, 16]. The goal in that context is to perform program tracing
once in a while at a minimal cost. For each program fragment, an
original and an instrumented version is created. The original ver-
sion is then modified to transfer control to the instrumented version
when the code fragment has executed for a given number of times.
The instrumented version is modified to transfer control back to the
original version after performing an instrumented run of the frag-
ment. Our work imports these ideas into the memory management
world, making the required adaptations. A potential static analy-
sis for reducing code-size was proposed by Arnold and Ryder [1]
but it was not implemented or measured. In contrast, we propose a
simple optimization that allows saving in code growth without the
need for specialized analysis. This optimization was implemented
and is reflected in our measurements. A similar method can be used
for program sampling as well. Finally, we also propose some inter-
procedural optimizations that can be used in the memory manage-
ment context.

Several papers have proposed to use static analysis in order to
reduce the use of barriers. Nandivada and Detlefs have attempted
to remove null checks using static analysis. Bacon and Vechev
[26] propose an analysis that attempts to find redundant barriers,
by checking the related lifetimes of objects. The success of such
method depends on a good alias information for pointers on the
heap. They have not implemented this method, but only checked
its potential on traces, thus, it is difficult to know how effective
it is. Joisha [19] proposes a detailed analysis that is targeted at
reference counting collectors. His analysis extends the ideas in [26]
substantially, but it only applies to root pointers, where information
is easier to obtain reliably. This method is thus not applicable for
typical concurrent, incremental, and real-time collectors, as they do
not employ a barrier on root-pointer updates. Also, at this stage the
analysis can only handle single threaded programs. Our method is
much simpler and can work with advanced multithreaded programs
and collectors. The Metronome collector [3] reduces the cost of the
Brooks read-barrier for incremental collectors by eagerly updating
root pointers and avoiding repeated de-referencing when no safe-
point exists in the code.

8. Conclusion
Garbage collectors are becoming more popular in modern program-
ming languages, and many of them employ memory barriers. In this
paper, we have presented path specialization: a new optimization
method for reducing the costs of memory barriers for memory man-
agers that use phases. Path specialization was shown effective for
a variety of garbage collectors including incremental, concurrent,
and real-time collectors. A naı̈ve implementation would imply a
large code increase, or an introduction of a specialized static analy-
sis to reduce code duplication. We have presented a simple method
for obtaining much of the possible advantages relying only on dead-
code elimination, which is available in most compilers. The result-
ing method is easy to implement and we have implemented it upon
the Bartok compiler and runtime system. Measurements with var-
ious collector barriers show drastic reductions in the overhead of
read-barriers and nice reductions in the overhead of write-barriers.
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