
STOPLESS: A Real-Time Garbage Collector for Multiprocessors

Filip Pizlo ∗

pizlo@purdue.edu

Daniel Frampton†

daniel.frampton@anu.edu.au

Erez Petrank‡

erez@cs.technion.ac.il

Bjarne Steensgaard

Bjarne.Steensgaard@microsoft.com

Abstract
We presentSTOPLESS: a concurrent real-time garbage collector
suitable for modern multiprocessors running parallel multithreaded
applications. Creating a garbage-collected environment that sup-
ports real-time on modern platforms is notoriously hard, especially
if real-time implies lock-freedom. Known real-time collectors ei-
ther restrict the real-time guarantees to uniprocessors only, rely
on special hardware, or just give up supporting atomic operations
(which are crucial for lock-free software).STOPLESS is the first
collector that provides real-time responsiveness while preserving
lock-freedom, supporting atomic operations, controlling fragmen-
tation by compaction, and supporting modern parallel platforms.
STOPLESSis adequate for modern languages such as C# or Java.
It was implemented on top of the Bartok compiler and runtime for
C# and measurements demonstrate high responsiveness (a factor of
a 100 better than previously published systems), virtually no pause
times, good mutator utilization, and acceptable overheads.

1. Introduction
Real-time requirements are ubiquitous in modern applications,
from multimedia players to communication controls, aviation sys-
tems, safety critical control systems, etc. Garbage collection is
widely acknowledged to speed up software development while in-
creasing security and reliability. Garbage-collection has been in-
corporated into modern popular languages such as C# or Java.
However, garbage collectors that support real-time applications are
notoriously hard to build. Traditional garbage collectors stop the
application to perform the entire collection or even just to initiate
or finish up the collection. Stopping all threads creates a computa-
tion pause which is unacceptable for real-time systems. Most mod-
ern on-the-fly collectors that have very short pause times do not
move objects in the heap. Therefore, memory fragmentation may
be created, leading eventually to a long compaction phase that foils

∗Work done while the author was an intern at Microsoft Research.
†Work done while the author was an intern at Microsoft Research.
‡Work done at Microsoft Research, while the author was on sabbatical
leave from the Computer Science Department, Technion, Haifa, Israel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM 2007 Montreal, Canada
Copyright c© 2007 ACM [to be supplied]. . . $5.00

the real-time guarantee. Arguably, designing a compaction proce-
dure that supports real-time computation is the toughest technical
challenge facing the design of real-time garbage collectors.

In this paper we presentSTOPLESS: a concurrent compacting
real-time collector that fully supports multithreaded applications
on multiprocessor platforms. It supports lock-free concurrent mul-
tithreaded programs running on a multiprocessor cooperating via
fine grained synchronizationwithout employing blocking locks. To
the best of our knowledge, this is the first garbage collector that
provides real-time support on stock multiprocessor hardware. Our
garbage collector consists of two basic components. The first is an
on-the-fly lock-free mark-sweep collector, which reclaims the un-
reachable objects concurrently. The second is a concurrent (par-
tial) compaction mechanism that supports parallel lock-free multi-
threaded applications. In addition to these two building blocks, we
also employ a new barrier optimization mechanism, reducing the
barrier costs drastically. The design and implementation ofSTOP-
LESS is a large project involving various engineering aspects and it
is not possible to describe all details in a space-limited conference
paper. We focus on some of the innovative parts, most notably the
concurrent compactor and briefly review the rest of the system.

The concurrent mark-sweep collector is an on-the-fly collector.
It is built on prior art [14, 13, 15, 16] but has been carefully
designed to be lock-free; memory allocation and reclamation is
lock-free, as are the mechanisms for marking objects, maintaining
the work list, and ensuring that the termination condition has been
reached. This collector has extremely short pause times and it
reclaims all unreachable objects.

Moving to the compaction component, the major difficulty in
moving objects while they are being accessed by the program, is
that at a certain point, two copies of the object exist and the program
threads should shift from using one version to the other. This shift
must preserve program semantics and some reasonable level of
memory coherence. A simple solution would be to halt all program
threads simultaneously to shift work from one copy to the other.
An approximation of this idea could make a realistic solution for a
uniprocessor (with some care for the details), because it is always
the case that only one thread is running at any given point. But on a
multiprocessor, stopping all the program threads simultaneously (at
an appropriate safe-point) creates a blocking stage for all threads,
which is unacceptable for real-time systems.

If simultaneous synchronization is not allowed, then the threads
may shift to working with the new copy one at a time, creating some
sort of inconsistency. Some reasonably simple solutions are possi-
ble if the program threads are not allowed to use atomic operations
to synchronize their memory accesses. In this case, the inconsis-
tency in the order of accesses, due to the gradual shift from the
old object to the new one, can be tolerated within most memory

coherence models. However, not allowing atomic operations is not
satisfactory. It is expected that real-time applications will employ
atomic operations to obtain a lock-free mechanism, avoiding syn-
chronization locks. A multithreaded real-time application coordi-
nates the threads’ activity via non-blocking synchronization primi-
tives such as the compare and swap (CAS) operation. Such atomic
operations create ordering constraints that do not leave much room
for reordering of memory accesses. Thus, a more sophisticated
compaction mechanism must be used.

As part of our real-time system, we provide a novel concur-
rent compactor calledCoCo, which provides a solution to the
above challenge. CoCo moves objects in the heap concurrently with
the program execution, supporting general multithreaded programs
running on modern platforms. Such programs may have parallel
threads that coordinate via atomic operations on the shared mem-
ory. CoCo preserves program semantics, lock-freedom guarantees,
and satisfies most memory coherence models including the lin-
earizable and the sequentially consistent memory model. The main
idea in CoCo is to use a temporary wide object during the transition
of data from the original to the copied object. This wide object al-
lows associating a status word with each field, directing the proper
access of memory during the copying phase.

The term lock-free (also known as non-blocking) was first used
in [25, 20]. The idea is that a system is non-blocking ifsomethread
will complete an operation after the system has run a finite number
of steps. Guaranteeing that a program runs in a lock-free manner
is a natural extension of the single-threaded real-time requirement,
where a thread is required to complete an operation after executing
a constant number of steps.

The term “real-time” is loaded with various levels of response
guarantees. Hard real-time is supposed to be robust to a worst-case
scenario, being able to cope with almost zero probability events.
Such a guarantee is almost impossible to achieve on multicore plat-
forms (with cache coherence protocols), or uniprocessor platforms
that use caches (with cache misses and cache hits creating incon-
sistent memory access cost), not to mention virtual memory. There-
fore, hard real-time is often forgiving to low probability bad events.
Nevertheless, even assuming liberal definitions,STOPLESSis more
on the soft real-time side. First, we have not implemented tech-
niques (that are known in the art) to handle arraylets (for avoid-
ing worst case fragmentation), stacklets (for achieving incremental
stack scanning), and robust scheduling (for ensuring collector ter-
mination). Second, copying progress cannot be guaranteed when
low probability events take place at a specific sequence. Overcom-
ing all these limitations is an important subject for future work.

To measure responsiveness of our collector, we propose a mu-
tator responsiveness measure, attempting to check how responsive
the system is for events that get generated at a high frequency. See
Section 6 for motivation and description of the new measure.STOP-
LESS turns out to be highly responsive, being able to respond to
events at the frequency of 108KHz, as required for high quality
audio event handlers. This responsiveness is higher than any other
compacting garbage collector known in the literature so far.

We have implementedSTOPLESSon top of the Bartok com-
piler and runtime system. Bartok is an optimizing ahead-of-time
research compiler and runtime system for Common Intermediate
Language (CIL) programs with performance competitive to the
Microsoft .NET Platform. The runtime system is implemented in
C#/CIL, including the garbage collectors.

Contribution. The main technical contribution is a compaction
algorithm that can move objects in the presence of a concurrent
multithreaded program running on a multiprocessor and allowing
cooperation via fine grained synchronizationwithout employing
blocking locks. As far as we know, concurrent moving of objects
while avoiding locks on a multiprocessor has not been possible pre-

viously1. Second, we enhance a mark-sweep on-the-fly collector
to make it lock-free and use it to reclaim garbage with extremely
low pauses. Third, we introduce the cloning read-barrier method,
a machinery previously used to instrument programs, now adopted
into the garbage collection world. This method reduces overheads
drastically. Finally, we propose a method for testing mutator re-
sponsiveness, and use this measure to demonstrate the responsive-
ness of our collector. Our system as a whole, including the con-
current mark-sweep and the compactor, obtains high responsive-
ness, almost to the level of a non-garbage-collected system. The
real-time garbage collected system provides the highest responsive-
ness known today on stock hardware, being able to handle events
at 108KHz. It imposes acceptable space and time overheads.

Organization. In Section 2 we provide an overview ofSTOP-
LESS. In Section 3 we present CoCo: the real-time compactor. In
Section 4 we describe our concurrent lock-free mark-sweep collec-
tor and the allocator. The cloning barrier implementation is briefly
described in Section 5, and the mutator responsiveness measure is
discussed in Section 6. Section 7 describes the implementation and
presents the measurements of the collector behavior. We discuss
related work in Section 8 and conclude in Section 9.

2. System Overview
STOPLESSprovides garbage collection support for real-time mul-
tithreaded programs running on multiprocessors. The garbage col-
lector consists of a mark-sweep collector for reclaiming unreach-
able objects and a compactor for controlling fragmentation for
long-running programs, called CoCo.

The concurrent mark-sweep collector is run to reclaim unreach-
able objects. When fragmentation appears, CoCo is run to reduce
fragmentation. The decision of which objects to mark is typically
made by the sweep procedure of the mark-sweep collector. Like
previous workSTOPLESScurrently uses a heuristic for moving ob-
jects. It evacuates objects from pages with occupancy below a pre-
determined threshold. Space for moving these objects is obtained
by use of the allocator. More sophisticated strategies are left for
future work.

Triggering and scheduling the collector is not the focus of this
paper. There is a lot to be said and researched on how to do this
right. In short, previous art in this area has proposed ways to esti-
mate the percentage of CPU time that must be reserved for garbage
collection work [28, 5] or compute this percentage based on ad-
ditional inputs [18, 30, 3, 31] so that the collector terminates on
time and allocation never gets stuck on exhausted memory. Given
this percentage, one can split the available processors so thatSTOP-
LESSexecutes on some processors and the application executes on
the other processors. Alternatively, each processor’s CPU time can
be split betweenSTOPLESSwork and application work. The first
configuration (running the collector threads concurrently with pro-
gram execution) is possible as long as the garbage collector does
not use a huge percentage of the CPU time and this configuration is
preferable as it lets the application threads run without interruption
and provide the best response time. It should be stressed that the
program executes (and in particular, allocates and modifies objects)
without any blocking, ensuring high responsiveness, even when the
collectors are executing concurrently. We use this configuration to
measure our collector. The mark-sweep collector and CoCo can run
in parallel with each other and in our experiments we allow each to
run on a dedicated processor, consuming, some of the time, 2 out
of the 8-way multi-processor machine used.

1 Except with unbounded cost [20]

3. CoCo: A Concurrent Compactor
In this section we present CoCo, which is a non-intrusive concur-
rent compaction mechanism allowing moving of objects concur-
rently with the run of the program threads, providing high respon-
siveness and maintaining a program’s lock-freedom.

The CoCo mechanism can be incorporated into a full com-
paction algorithm, such as the Compressor [23], to compact the
entire heap and eliminate fragmentation, or it may be used with any
on-the-fly mark and sweep collector [14, 13, 15] (as it is used here)
to do partial compaction to reduce fragmentation. The overhead of
CoCo increases with the number of objects to be moved, because its
overhead is higher during the move. Thus, its design goal was that
of a partial compactor. InSTOPLESS, we employ the mark-sweep
collector to finish updating pointers to the relocated objects. This is
an easy task while traversing the graph of live objects (proposed by
[11]). Alternatively, an additional final stage can be added to let the
compactor explicitly and concurrently fix pointers, perhaps using a
mechanism such as the one employed by the Compressor [23].

When an object is to be moved in CoCo, it must betagged
previous to the run of CoCo (e.g., by the sweep procedure) by
atomically setting a bit in the object header and adding it to a
list accessible to CoCo. Creating a copy of the original object and
making the program switch to working with the new object instead
of the original one, keeping lock-freedom, maintaining acceptable
memory coherence, and reducing the overheads to an acceptable
measure is nontrivial. The original lock-free copying mechanism
of Herlihy and Moss [20] employed a chain of immutable copies
of the object, one for each object mutation. This is a high overhead
to pay in space and time. CoCo also incurs some, though smaller,
space and time overheads. First, CoCo employs a read barrier,
which has its cost, but an interesting cloning mechanism is used
to eliminate this cost almost entirely when the compactor is idle.
Second, during object copying, CoCo creates a temporarywide
object to represent a mutated object. A forwarding pointer is kept
in each old object pointing to the new copy of the object. In the
wide object, each field is juxtaposed with a status field; the ‘wide’
field (the status and original field combination) can be atomically
modified using a compare-and-swap. We ensure that wide fields are
at most twice the size of the processor word; for example, on a 32-
bit architecture the largest wide field would have a 32-bit status and
a 32-bit payload2, thus allowing a 64-bit compare-and-swap to be
used. Such a double-word compare-and-swap is available on most
modern instruction set architectures. If the original field is already
twice the processor word size (such as a 64-bit field on a 32-bit
processor), we first split the field into two 32-bit halves.

The details of how objects are copied and how mutators access
objects to be moved is described in Sections 3.2-3.3. Section 3.4
describes an extension of the basic mechanism that allows mutators
to perform atomic operations (e.g., CAS) on objects while they are
being moved.

3.1 The challenge

A reader who has not previously dealt with real-time or lock-free
collectors may wonder why it is difficult to construct a collector
that supports lock-free programs. We illustrate the problem by dis-
cussing a generic real-time collector, similar to the ones proposed
by Nettles and O’Toole [27], Cheng and Blelloch [7, 10], and Hud-
son and Moss [21]. The basic idea is to create and maintain two
copies of each object. The fresh new copy is created by the collector
and thereafter, any application thread is responsible for executing
writes to both the original and the replicated copy. The main copy
(used for reading the current values) is the original object. Once all

2 We use ‘payload’ to refer to objects fields not added by CoCo, such as the
forwarding pointer word, or the status fields in the wide object.

objects have an updated replica, the copying phase terminates by
stopping all program threads and modifying their root set pointers
to point to the copied objects.

The main problem with this solution is that the two copies of an
object are not guaranteed to contain the same information, unless
proper locking mechanisms are introduced. Suppose two threads
try to concurrently modify a fieldf , which originally holds the
value0. ThreadT1 tries to write the value1 into f and Thread
T2 tries to write the value2. Although they attempt to write to
the field concurrently, one of the writes will happen before the
other. Assume thatT1 writes first. A third thread that reads this
field may see the field value going from0 to 1 and then to2.
However, threadsT1 and T2 next concurrently attempt to write
to the replica, possibly happening in a different order, making1
be the value that prevails in the replica. A third thread that reads
the field in the original location and then in the copied location
may observe the sequence of values0, 1, 2, 1 in the fieldf . Such a
sequence should never be observed by any thread according to any
reasonable memory model. To solve this, previous work employed
locking or assumed that there were no concurrent (non-blocking)
writes to a memory location. However, non-blocking concurrent
accesses are essential for any lock-free real-time algorithm.

A second problem is that in the generic algorithm, the threads
are all halted simultaneously to shift from the original copy to
the replica. This also involves some undesirable locking mecha-
nism, making it possible for one slow thread to block others. If the
threads are not stopped simultaneously, then they may be in dif-
ferent stages, where some of them are still reading the old replica,
whereas others are not writing to it anymore. Various other haz-
ardous races exist.

Past solutions include disallowing simultaneous writes [21]; or
(inefficiently) creating a full copy of the object for each modifi-
cation [20]; limiting the run to a uniprocessor or changing the ac-
cessed copy while the program threads halt [3]. Collectors that han-
dle concurrent compaction as the application executes concurrently
[11, 23] employ virtual memory (page protection) to simultane-
ously block access to stale data. The problem with these collectors
is that they induce a trap storm whose duration is tens of millisec-
onds and during which the program is practically halted. CoCo’s
responsiveness is three orders of magnitude better (less than tens of
microseconds).

CoCo does not need to stop the threads simultaneously. It also
does not rely on locking to keep the replicas coherent. The main
idea is to create a temporary wide object in which each field is as-
sociated with a status word. The status changes atomically with the
data and indicates the current location of the data values. The use
of this temporary wide object and incremental object copying, in
which the transfer of data location happens field by field, provides
the high responsiveness of CoCo. The algorithm is described in the
following subsections.

3.2 The object copying mechanism

In what follows, we assume that CoCo runs on a single thread con-
currently with the program. An extension to several CoCo threads
is discussed in Subsection 3.5 below. CoCo traverses the objects
that need to be copied one by one in any order. The first step of
copying an object is to create an uninitialized wide version of the
object, as discussed earlier. Objects contain a special header word
used as a forwarding pointer for CoCo during the compaction. In
the first phase, the forwarding pointer will store a reference to the
wide object. Later it will point to the new copy of the object.

CoCo copies each payload field from the original object into
the wide object. At the same time, the mutator may modify the
wide object (modifications to the original are no longer allowed
after a wide-object pointer has been installed to the header of the

Hdr data

Hdr status

Hdr data

Wide Object

data

data

status data

data

Figure 1. Data in the original “From” objects moves to the “Wide”
object, where each data word is paired up with a status word. The
data in the wide object subsequently moves to a “To” object to
complete the object relocation operation.

original object). At all times, the status field informs the application
via read- and write-barriers where the up-to-date version of the
associated payload field is. When the status field is zero (the initial
value), all actors operating on the object assume that the most up-
to-date value is in the original object. All modifications to the wide
object, be they performed by a CoCo thread copying fields into
the wide object or a mutator thread modifying the wide object, are
performed using a two-field compare-and-swap on the wide object,
which asserts that no updates are lost. For example, a mutator
update cannot be lost by the collector’s copy operation overwriting
it, because the collector’s CAS will assert that the status was zero
when performing the copy, while the mutator’s CAS will change
the status to be non-zero upon update.

Once the payload is relocated to the wide object, the next stage
of copying commences: a final copy of the object, denoted theto-
spacecopy, is allocated uninitialized (this object has the normal,
‘narrow’, object layout) and a reference to it is added to the wide
object. At this point three versions of the object are reachable: the
original that no longer contains the most up-to-date payload, the
wide version that is actively being accessed and modified by the
mutator, and the uninitialized to-space copy referenced by the wide
object.

Exactly one CoCo thread is designated to populate a to-space
object copy (unlike the wide objects whose fields can be written by
a CoCo threads or by program threads). This single copying per-
mission avoids problematic races during this final copying. Fields
are copied one at a time as follows: the field and status are read from
the wide object; the field value is written into the copy; and finally
a CAS is used on the status and payload field in the wide object,
changing the status to indicate that the payload has been placed in
the to-space copy. The CAS simultaneously asserts that the value of
the field had not changed, thus ensuring that no updates are lost. If
the CAS fails, CoCo simply attempts the procedure again. It is only
after the status is so changed that the mutator can begin accessing
this field in the to-space copy. The three object copies are depicted
in Figure 1.

Object copying completes when all fields are relocated to the
to-space copy. At this point the forwarding pointer in the from-
space original is repointed to the to-space copy, thus rendering the
wide object unreachable. From this point forward, the only purpose
the from-space object serves is to have a reference to the to-space
object. Controlling consistency is easy at this point because though
two copies exist, it is well known which one is more up-to-date. The
least bits of the forwarding pointer are used to distinguish pointing
to the wide object and pointing to the final copy.

3.2.1 System Phases

To enable lock-free copying of objects, CoCo has several phases
separated by softhandshakes, typical for on-the-fly collectors (see
for example [14, 13, 15, 16]). The collector uses soft handshakes to
make the program threads pass from one phase to another without
halting their operation. Instead, the threads are notified that a new
phase is coming and they change into it one by one by polling a
shared variable or via some signalling service. The soft handshake
mechanism allows very short pauses, because threads do not need
to wait for some simultaneous synchronization point. However, it
also complicates the design because at any instant, the system may
straddle two phases: some threads may be in the previous phase
while others are already in the new phase.

The default phase for CoCo isidle, where no compaction is
taking place. During this phase any number of (non-compacting)
garbage collector cycles may be completed and any number of
objects may be tagged for relocation. This phase is only exited to
initiate object relocation. At such time, CoCo moves into theprep
phase; subsequently it moves to thecopyphase; and eventually it
returns to theidle phase. When in theprep and thecopy phase,
the collector and the mutator access the heap via read- and write-
barriers as described in Section 3.3. Thecopy phase only ends
when we know that every from-space copy has a complete to-
space variant; we then let the mark-sweep collector ensure that all
(live) references in the roots and heap are forwarded to the to-space
copies.

Note that theprepphase’s sole purpose is to support atomic op-
erations in a lock-free manner. Section 3.4 describes how we im-
plement atomic operations in a lock-free manner. We now proceed
with describing regular memory accesses.

3.2.2 Object States

CoCo recognizes four possible object states for objects in the ‘nar-
row’ object layout:simple, the default state, as well astagged, ex-
panded, and forwarded, which represent various stages of object
copying. (There is a fifthtaintedstate, which is only used for sup-
porting atomic operations (see Section 3.4). The states are stored
in the low order bits of the forwarding pointer field. When the col-
lector or a mutator picks an object for relocation, it changes the
object’s state intotagged. This can only be done during theidle
phase. When CoCo is in thecopyphase, objects get expanded – that
is, a wide version is allocated and the object state transitions from
taggedto expanded. This transition is done atomically with storing
the pointer to the wide object, since both the state and the pointer
are stored in the forwarding pointer field. During theexpandedstate
fields are copied from the original location to the wide object. Once
copying to the wide object terminates, the to-space variant of the
object is being created and fields are copied to it from the wide ob-
ject. Once the entire payload is moved into the to-space copy of the
object, the wide copy is discarded and the object is placed in the
forwardedstate.

3.2.3 Status Fields and Field States

In the wide object, each field has a status field that contains a
three-value field state (typically represented using two bits). For
fields that may be accessed using atomic operations the remaining
status field bits are used to store version information and other
state used by the atomic update algorithm (see Sec. 3.4). The
three field states are:inOriginal, inWide, andinCopy. These states
inform the mutator where the most up-to-date value for the field
can be found, and they correspond respectively to the three object
versions that will exist during the course of copying: the original
from-space version, the wide version, and the new to-space version.
The inOriginal state corresponds to the numerical value zero, thus

insuring that when the wide object is initialized to zero all fields
will appear to be in theinOriginal state.

3.3 Handling Concurrent Access

We now move into the main challenging part: supporting mutator’s
and collector’s reads, writes, and atomic operations (like compare-
and-swap) on any object field. The main tool that we use is the
wide object, in which CASs can be used to manage the flow of
information for each of the object fields. Theidle phase is the
simplest since it is clear which copy should be used. However,
pointers to old copies of the object may still exist, and therefore,
the barriers are actively checking that the application only uses the
new copy.

3.3.1 Barriers

A read-barrier ensures that the appropriate copy is accessed while
the object is being copied. If the wide object does not exist, we
simply use the forwarding pointer to determine the correct copy of
the object to read from. If the wide object does exist, we read the
field state first, and use it to determine which copy of the object to
use to read that field: the original, wide, or to-space copy.

The goal of the write-barrier is to make sure that updates do not
get lost between the different copies in a way that violates a reason-
able memory coherence model. Standard memory models such as
the linearizable memory model or the sequentially consistent mem-
ory model are examples of models supported by CoCo.

Objects are in theexpandedstate when CoCo is actively copy-
ing the payload into the wide object copy – thus a mutator must
take care when writing data into the object. If the mutator writes
into the original from-space copy, the write may occur after CoCo
copies the old value into the wide object – resulting in the mutator’s
new value getting lost. Also, an uncoordinated mutator write into
the wide object may be shortly overwritten by the copying execu-
tion of CoCo, also resulting in the mutator’s value getting lost. Dur-
ing thecopyphase, the mutator first attempts to expand the object
(if not already expanded). It allocates a wide object and attempts to
install it into the object’s forwarding pointer; this attempt may fail
harmlessly if another thread has installed the wide object first. The
installation of the forwarding pointer includes an atomic modifica-
tion of the object state (contained in the lower bits of the pointer)
into anexpandedstate. At that point, the state is read again, and
if it is still expandedthen the write is executed via a CAS on the
wide field. Namely, the current value and status of the field are read
and the CAS modifies both the field’s value and state, asserting the
previous value and state. The field state is set toinWide. In the case
of a CAS failure, we may choose to either give up or try again;
but giving up is only an option if we know that the CAS failed be-
cause of another thread’s attempt to write, not CoCo’s attempt to
relocate the field, or another thread’s attempt to perform an atomic
operation.

A failure in the CAS operation above may result from the status
word currently signifying that the field isinCopy. If that happens,
or if the status that was originally read indicates that the field is
inCopy, then a simple write is performed to the new to-space copy
of the object.

Both reads and writes may assume that no wide objects are
present in theidle and prep phase. This is correct unless atomic
operations are supported, which is the case discussed below.

3.4 Supporting Atomic Operations

Languages like C# and Java allow the programmer access to atomic
operations like compare-and-swap, making it possible to write
lock-free code in high-level code. This section discusses exten-
sions that add support for such features without using locks. For
simplicity of presentation, we concentrate on implementing the

atomic compare-and-swap operation. It is easy to write lock-free
(but not always wait-free) implementation of other atomic opera-
tions such as atomic increment, etc. in terms of an atomic CAS. The
operationCAS(addr,old,new)writes the valuenewto locationaddr
if this location contains the valueold at the time of the write. The
comparison and value exchange happen atomically. The returned
value is a boolean signifying whether the comparison succeeded
(and consequently the new value was written).

The main problem with synchronized operations during concur-
rent moving of objects is that linearization of memory accesses is
far more constrained. A successful CAS modifying a value must
see the modified value in the linearized sequence of operations and
an unsuccessful operation must see an unexpected value in the lin-
earized sequence of operations.

We describe the treatment of atomic operations according to
the different steps of object copying. Consider first thecopyphase.
Similarly to field write, if the object is not yet expanded, it is first
expanded as follows: the original value of the field is first read;
if the value is different from the CAS old value, the CAS returns
a failure. Otherwise, the wide field and its corresponding status
word are atomically written (via a CAS operation). The old value
assumed is 0 and the old status assumed isinOriginal. The CAS
atomically replaces those with the new value and theinWidestatus.
If it failed because of status change, or if the field was already in the
inWidestate, the CAS is then re-executed directly on the wide field
in the wide object. Similarly, if the CAS fails because the status
changes intoinCopyor if the field status was detected to beinCopy
at the first place, then the CAS is performed directly on the to-space
copy of the object and we are done. Note that failing due to status
changes can happen at most twice, and so the overall operation is
still lock-free.

A problem that emerges from the fact that we do not allow
simultaneous stopping of the application thread is that while some
threads are executing the barriers of thecopyphase, other threads
may still be running the barriers of the previous phase. If we did
not include the specialprepphase, threads in thecopyphase would
have run concurrently with threads in the idle phase. That would
cause chaos in the view threads have on the changing values of a
given field, with little chance to linearize all these different views.

The prep phase allows cooperation between threads not yet
copying and threads that are already creating and using wide ob-
jects. When an application thread in theprep phase writes to an
object, it first checks if there exists a wide object. If yes, then the
write is done (atomically) to the wide field of the wide object. Note
that a to-space copy of the object cannot exist since the compactor
will copy the object only after all threads have responded to the
handshake and moved to thecopyphase. If the wide object is not
yet active, then the write must be performed on the from-space ob-
ject. However, this may create a problem. If a copying thread is
starting to work on the wide copy of the object, the write of the
thread in theprepphase is going to be lost. This may make it im-
possible to linearize the operations on this field. To solve this prob-
lem, the writing thread sends a warning to a copying thread about
being in the middle of a write by atomically changing the status
of the object to a new designated value, denotedtainted. After the
write completes, the state is changed back totagged. Since many
threads may be executing writes concurrently in theprepphase, we
actually keep a counter of the tainting threads. Ataint countgets
incremented upon taint and decremented upon untaint; the transi-
tion back totaggedonly occurs when the taint count reaches zero.
How do copying threads treat a tainted object? If a thread in the
copyphase is attempting to start using an expanded copy of the ob-
ject and it finds that the object istainted then it gives up on moving
this object. To do that, it moves the object into thesimplestate,
pinning it to the original location and preventing it from being relo-

cated. This should only happen rarely, when a simultaneous write
to an object by both aprep andcopy threads happen. In practice,
we have never seen it happen in all our benchmark runs.

Reads in theprep phase execute exactly as reads in thecopy
phase. CASs in theprep phase run similarly to writes in theprep
phase, either executed on the wide object, or using the tainting
mechanism to avoid hazardous races.

The taint count can be stored in the forwarding pointer word;
since a tainted object never moves and only has a from-space copy,
the forwarding pointer does not contain any relevant value.

Our implementation also handles atomic operations on double-
word fields, but the description of this part is omitted for lack of
space.

3.4.1 Atomic operations on double-word fields.

Both C# and Java 5 allowlongfields to be atomically accessed even
when running on a 32-bit platform. Also, some memory models
guarantee that regular accesses tolong fields on 32-bit platforms
will only read values that were actually written to them – so reading
one 32-bit half of one value and the other half from a different value
would be illegal. Similar considerations apply to 128-bits double
words on a 64-bits platform. One of the more challenging parts
is implementing atomic operations on double-word fields, such
as long fields in Java or C# on 32-bit architectures. C# supports
atomic reads, writes, and compare-and-swap onlong fields on all
architectures so it is useful to have a lock-free implementation of
these atomic operations.

We support long writes by using a simple logging mechanism
that we callaction items. This mechanism is an adaption of the
mechanism proposed in [17] for implementing MCAS with a stan-
dard CAS. Details are omitted from this short version of the paper.

3.5 Parallelization

CoCo is currently described as a single threaded concurrent collec-
tor. However, it can be made both concurrent and parallel, allowing
several CoCo threads to run in parallel and concurrently with the
program. This modification is outside the focus of this paper. To do
this, the copying work should be distributed between CoCo threads.
The distribution of work is trivial because each object can be dealt
with independently, or one may use coarser distribution granularity.
Since the copying threads never race on handling the same objects,
no data race issues arise.

4. The Concurrent Mark-Sweep Collector and
the Allocator

Our collector is an on-the-fly mark-sweep collector based on the
Doligez-Leroy-Gonthier (DLG) collector [14, 13, 15, 16], with
a special emphasis on lock-freedom. This collector uses a lock-
free virtual mark-stack, a lock-free work-stealing mechanism, and
a mechanism for determining the termination condition that does
not block any mutator threads. It is accompanied by a lock-free
allocator. We shortly describe the main features below.

Typically, a mark-sweep collector employs a mark-stack to
guide the object traversal. Mark-stack overflows can be problem-
atic and produce unpredictable behavior. We avoid the potential for
mark-stack overflows by allocating an extra word in each object3.
This word is used by the collector for both marking objects and
linking them into a virtual mark-stack.

The link part of the marking word is used to create linked lists
of objects to be scanned. Objects linked on such lists are considered

3 The object’s forwarding word described in the previous section may be
reused as the marking word in configurations where the marking phases
and the compaction phases do not overlap.

gray. (In the standard tri-color variant this means that the object has
been noted by the collector, but its descendants have not yet been
traced.) Each thread maintains its own list of gray objects, and the
lists are kept disjoint. Atomic compare-and-swap (CAS) operations
are used to mark an object by simultaneously changing the color
and adding a link to an object. Using the marking words to create
the linked lists makes the performance of the marking operation
predictable. It requires neither acquisition nor the allocation of a
new marking buffer.

Because the elements are added to the virtual mark-stack in an
atomic manner, simultaneous access of the collector to these lists
is easy. Once the collector is done tracing objects reachable from
roots, it acquires from the threads the gray objects that were marked
by the write barrier. This is done by lock-free “stealing” parts of the
linked lists of the mutator threads. The stealing mechanism can be
also used to allow parallel collector threads to steal partial lists from
each other for balancing the work distribution.

The allocator. Allocation is based upon a lock-free segregated
free-list allocator. Each occupied page is devoted to memory blocks
of the same size. Each page can be “owned” by a particular thread
or be “un-owned” and either on a linked list of available pages or on
a linked list of unavailable pages. A thread may acquire a page by
performing a lock-free unlink operation on a list of available pages.

Each page maintains a linked list of unallocated memory blocks
in the page. When a thread acquires a page, it uses a single atomic
exchange operation to acquire the linked list of unallocated mem-
ory blocks and clearing the list field in the page header. Since each
thread maintains lists of available blocks of each size class, most al-
location requests can be handled by simply unlinking a block from
a list. If the thread-local lists of memory blocks of the appropriate
size has been exhausted, a new list is acquired, as explained above.

A page on a list of unavailable pages becomes eligible to be
moved to a list of available pages when it has a non-empty list
of unallocated memory blocks. After the eligible pages have been
removed from the lists of unavailable pages, a handshake with all
mutator threads is performed prior to their insertion on the lists of
available pages. The use of the handshake avoids the standardABA
problem of lock-free data structures for removal from the list of
available pages.

Garbage collection cycles are scheduled to terminate prior to
exhausting available memory in order to preserve the lock-free
behavior of allocation.

Parallelization. The collector is be default concurrent. It can be
configured to be both concurrent and parallel by having multiple
collector threads. Since the marking is done atomically by default,
the only issue with parallelization is work distribution between
threads. The virtual mark-stacks can be used to share work be-
tween concurrent collector threads, by allowing collector threads
to ”steal” all or part of the list of gray objects from another collec-
tor thread. Such techniques are described in [5]

5. Optimizing Memory Barriers via Cloning
The read- and write-barriers of CoCo have fast and slow paths,
depending on the phase the compactor is in. For example, if the
compactor is idle, then no barrier action is required, whereas while
the collector is copying objects, more work is required to obtain
the correct location of the current object field. Choosing between
the different paths amounts to checking a variable to determine the
phase of the compactor. However, the cost of checking a variable is
not negligible, especially when executed within a read barrier [6].

We have adopted the cloning methods of [2] to reduce the
overhead significantly. The compiler generates two copies of the
code, one employing the full CoCo barriers with the overheads
involved, and the other ignoring the existence of a potential long

path. In order to use this cloning method, we need to have a way to
identify phase changes in a timely manner, and we need to be able
to move dynamically from one clone to the other.

We observe that a phase change of the collection, which forces
a change in the barrier behavior is possible only during safe-points
(a.k.a. GC points). Safe-points are typically much less frequent
in the code than memory accesses. Therefore, between two safe
points we may assume that the phase has not changed and continue
executing the barriers without testing the phase. This is done by
having specialized code that executes no tests and having a method
to jump into this path and out of it (into the safe path that safely
executes all the tests).

6. Measuring Responsiveness
The minimum mutator utilization (MMU) measures for a given
window size, how much of the CPU is devoted to mutator work at
worst case during the execution. However, it typically ignores the
barrier overhead experienced by the mutators. For our collector,
a substantial amount of its work is executed via the mutators’
barriers, and we felt it would be wrong ignore the barrier overhead.
Instead, we measuredSTOPLESS’s responsiveness as follows. First,
we introduced a new measure, denoted themutator responsiveness
measure, which attempts to capture the ability of a mutator to
respond to events on the real-time system. Second, we tried to
measure mutator utilization in the presence of barriers.

Motivation. A real-time system typically needs to respond in a
timely manner to events. When an event fires, it requires a response
within some given deadline. If the deadline is met, we consider the
event handling successful. A long pause due to garbage collection
will cause one or more events to be missed, whereas a pauseless
garbage collector with good mutator utilization will meet most
(or all) deadlines. We propose to fire events at a given rate (a
parameter), and test what fraction of the fired events get served
before the next event fire. A stop-the-world collector will make
the service routine fail a lot of the deadlines during the time it
halts the application threads to perform the collection. Even a time-
based collector that runs every other millisecond will fail 50% of
the deadline, when the events are fired at a rate of 1khz or faster.
A second interesting parameter in this measurement is the amount
of work involved in serving the event. A longer service will cause
more deadlines to be missed.

The mutator responsiveness measure.Given a frequency of
event triggeringf and an event handler that does workw one
can measure the percentage of fired events that get served on time
(before the next event is fired). We plot a graph of these points for
varying event-firing rates. We plot several lines, one for each work
loadw executed by the handler.

The reason we measure a failure probability is that some collec-
tors (and in particularSTOPLESS) do not run on a real-time oper-
ating system. Therefore, pauses will occur even if the collector is
lock-free.

Measuring MMU when much work is executed in the barriers.
In our system, we let the collector run concurrently on a separate
processor. Looking at the traditional MMU measure, it may imply
in this setting that the mutator is using a 100% of the CPU at all
times, because read- and write-barriers are not accounted for. Since
in our case barriers are not trivial, it is interesting to check how
much of the processing time is spent on pure application code. We
check that by comparing the throughput at various stages of the
collection. First, we run a benchmark without copying any objects,
therefore, running at an idle state the entire run. Next, for each
barrier path, we run the application with that path taking place in
the entire run and measure the obtained throughout. For example,

the entire run is executed in theprep phase. We then check the
degradation in performance and report mutator utilization for each
of the barrier paths. This provides information about the mutator
utilization during each of the various phases. We then measure and
report the fraction of time spent in each stage of the collection,
providing a comprehensive mutator utilization report.

7. Implementation and Measurements
STOPLESSis implemented as a component of the Bartok compiler
and runtime system. The allocation and garbage collection imple-
mentation has lock-free characteristics from the perspective of the
mutator threads in all but a few cases. One case that may cause a
mutator thread to block is when the heap needs to be expanded.
One may decide to rule this option out for real-time applications.
Another case is when a mutator is calling external library code
(e.g., system calls). Also, our implementation does not mark the
threads’ stack frames incrementally. This can be done using a stack-
lets mechanism as proposed by Cheng and Blelloch [10].

We have evaluated the performance ofSTOPLESSin a config-
uration that runs X86 executables on top of Microsoft Windows
Server 2003. The operating system isnot a hard real-time oper-
ating system. The executables run at normal scheduling priority,
and all threads are allowed to run on any available processor (in
other words, no “games” are played with processor affinity or other
mechanisms to deviate from standard runs of multi-threaded ap-
plications). The measurements were performed on the machines in
their “natural” state, meaning that the machines were connected to
the network and no services or devices were stopped to increase
predictability.

Our prescribed use of a concurrent real-time collector is using a
separate processor to run the collector, allowing the mutators high
responsiveness gained from the fact that the collector is separate.
Since we have two collectors, the mark-sweep collector and CoCo,
and we use an 8-way multiprocessor, we always let each of the
collectors have its own intended processor and let the program use
the other 6 processors. We do not attempt to run applications with
more than 6 threads. For that, we would use a time-based triggering.

The responsiveness measurements have been performed on an
HP XW8400 dual x64 quad-core workstation running Microsoft
Windows Server 2003 Standard x64 Edition at 1.86GHz with 10GB
RAM, and all other measurements have been performed on an
Intel Supermicro X7D88 dual x86 quad-core workstation running
Microsoft Windows Server 2003 Enterprize Edition at 2.66GHz
with 16GB RAM.4.

The performance of various programs when run with theSTOP-
LESSgarbage collector is compared with the performance when run
with a simple stop-the-world mark-sweep collector provided with
Bartok. We also attempt to compare the runs ofSTOPLESSto runs
of a modifiedSTOPLESSthat excludes the compactor CoCo. The
resulting collector is a simple concurrent mark-sweep collector and
we denote itCMS. Since the major overheads imposed bySTOP-
LESS originate from CoCo, it is interesting to compareSTOPLESS
to CMS and check the overheads of CoCo. The benchmarks used for
the comparison are listed in Table 1. The first three benchmarks are
available from http://research.microsoft.com/∼zorn/benchmarks/.
The game playing programs and xlisp are the commonly used
benchmark programs ported to C#. The JBB program has been
translated from Java into C#; the porting notes indicate that sev-
eral scalable data structures have been replaced with non-scalable
data structures, so the multiprocessor performance of this program
should not be compared with that of the original Java program. This
version of JBB runs for 4 minutes on each number of warehouses,

4 The use of two different machines was done to parallelize the data acqui-
sition.

� �

� � �

� � �

� � �

� � �

� �

�

� � �

� � �

� � �

� � �

�
� � 	
 � � � � � � � � � 	 � � � � � 	 � �

 � �
 � � � � � � 	 � � � � �

� � � �� � � �

� � � � � ! � � � � � � � � � � � � � � � � "

Figure 2. Relative execution times for various triggering configu-
rations, normalized according to the mark-sweep collector.

with a standard rampup preparation step in between. For each con-
figuration measured, the test has been run three times, and the re-
ported result is the median result. Table 1 provides, for each bench-
mark, some indications of its size and complexity. The first col-
umn describes how many different types the program has, then the
number of methods, number of CIL instructions, number of objects
allocated, and total number of MB allocated during the run. The
amount of allocation for JBB has been measured with the stop-the-
world mark-sweep collector.

7.1 Garbage collector overheads

Figure 2 shows relative execution times for the timed benchmarks
when run with different garbage collector configurations. The MS
configuration uses a simple stop-the-world mark-sweep garbage
collector and theCMS configuration runs a concurrent mark-sweep
collector as discussed above. The CoCo5, CoCo10, and CoCo20
configurations use theSTOPLESScollector configured to copy 10%
of all allocated objects every 5, 10, and 20 garbage collection
cycles, respectively. The CoCoInf configuration uses theSTOP-
LESScollector configured to never copy any objects, thus, incurring
the lowest overhead. We report the ratio of each run over the run of
the MS collector. A value below 1 means that the configuration
measured runs faster than MS. In what follows, if the triggering is
not specifically mentioned, the default triggering of the compactor
is once in every 10 runs.

Figure 3 shows the performance of various garbage collection
configurations for various warehouse sizes for the JBB program.
The reported throughout is provided in business operations per
second (bops). Here, comparison of the concurrent collector to
the mark-sweep collector is not fair because the latter is not very
scalable. All versions ofSTOPLESSperform better than it starting
at 3 warehouses.

In Figure 4 we report the space overhead ofSTOPLESS. The
extra memory used includes the following: two extra words in the
header of each object, the wide objects versions for each copied
object, and the co-existence of old and new versions of the copied
objects in the heap until garbage-collected. One of the two extra
words is used for the concurrent mark-sweep in order to keep a vir-
tual mark-stack that never overflows. A mechanism with a similar
worst-case overhead exists in all mark-sweep collectors that we are
aware of. The second extra header word functions as a forwarding
pointer for the concurrent compactor. A similar overhead exists for
most concurrent compactors that we are aware of (with the excep-

� � � � �

� � � � �

� � � � �

� � � � �
��

� � � � �

��
�	

�
� ��

 � � � ��

�

� � � � �

�

� � � � �

� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

� � � � � � ! " � � � � � � � � � � � � � � � �

Figure 3. Throughput (bops) for varying numbers of warehouses
in the JBB program for various garbage collector configurations.

� �

� � �

� � �

�

� � �

� �

� � �

� � �

� � �

�

� � �

� � 	
 � � � � � � � � � � � � � � � � � 	 � � � �
 � � � �
� � � �

� � � � � � � � � � � � � � ! " � � � � � �
� � � � � � � � � � � � � � ! " � � � � � �
$ � � � � ! " � � � � � � % & � � � ' � � � � $ � (# � � � � !) � � � � % � � � !) � � � � % � � � � � � � (� � � �

Figure 4. Space overheads: adding one header word, two header
words, and the total space overhead.

tion of the smart maintenance of forwarding information in [1, 23]).
The wide objects overhead is unique for our collector. Here, two
alternatives can be used. The first one allocates the wide object
during the copying process and the second alternative allocates all
wide objects before the copying begins. The first alternative car-
ries negligible memory overhead, but may increase the worst case
write-barrier overhead, because allocation may be required in the
write barrier. The second alternative limits the barrier overhead,
but has a memory overhead for the wide objects. We measured the
space overhead for this second more space-consuming alternative,
which we have used in our system. The triggering that we used,
copies all objects out of pages that are less than 50%, but limits the
overall copying by 10% of the heap space. We measured the space
overhead by running frequent stop-the-world collections, and tak-
ing the maximum (over all collections) of the space consumed by
live objects at the end of these collection. The overhead for the ex-
tra header words was computed by simply adding the words to the
header and measuring the space. The overhead for the wide objects
and to-space objects was measured by checking the space required
for them in the actual runs ofSTOPLESSthat copied the objects.

BenchmarkTypes Methods InstructionsObjects AllocatedMB Allocated Description
sat 24 260 19,332 8,161,270 172 SAT satisfiability program.
lcsc 1,268 6,080 403,976 8,202 426,729 A C# front end written in C#.
zing 155 1,088 23,356 12,889 928,609 A model-checking tool.
bartok 1,272 8,987 297,498 434,401 11,339,320The Bartok compiler.
go 362 447 145,803 17,905 714,042 The commonly seen Go playing program.
othello 7 20 843 641 15,809 The commonly seen Othello program.
xlisp 194 556 18,561 125,488 2,012,723The commonly seen lisp implementation.
crafty 154 340 40,233 1,795 217,794 The commonly seen chess program.
JBB 65 506 20,445 501,848 54,637,095JBB ported to C#.

Table 1. Benchmark programs used for performance comparisons.

7.2 Responsiveness

Processing of audio events seems an appropriate test for respon-
siveness of a real-time system. We have adopted some of the audio
characteristic events for testingSTOPLESS. Events happen at a reg-
ular rate and have to be processed prior to the arrival of the next
event. We created a program to measure the ability to perform a
computation task at the rate audio events would occur.

The test program creates events. For each such event, the pro-
gram spins in a loop until the time for the event has passed, then
the computation task is performed, and a determination is made
whether or not the computation task was completed before the next
deadline. The program was run with the common audio frequencies
of 22KHz, 44KHz, 48KHz, and 108KHz for the events.

The program was run with three different computation tasks and
with varying specified sizes. The IntCopy task copies a specified
number of integer values in an array. The RefCopy task copies a
specified number of reference values in an array, invoking the ref-
erence write barrier of a collector. The RefStress task is similar to
the RefCopy task, but the program has another thread that repeat-
edly allocates (and releases) a 400MB data structure involving over
a million objects.

Table 2 shows howSTOPLESSperformed on the test program
using various collectors. Each configuration was run once. The
program reports results for a 100 second simulation of events with a
10 second warmup period. The task size was 256, and the frequency
was 108KHz. For each configuration, the percentages are shown
for the computation tasks completed prior to the next event, and
the events skipped due to the computation task of a prior event not
having completed by the scheduled time for the event. The longest
time to completion of a computation task is also reported.

TheSTOPLESScomputation tasks runsSTOPLESSin its default
configuration. The STW and CPP configurations respectively rep-
resent the use of a stop-the-world copying collector and a C++ im-
plementation that does manual memory management. The data in-
dicates thatSTOPLESScan complete computation tasks for a high
event frequency with high probability. The stop-the-world collec-
tor performs poorly when a garbage collection is triggered; for Re-
fCopy the collection is triggered when the sequential store buffer
for the generational collector is filled.

7.3 Mutator utilization

TheSTOPLESSgarbage collector employs several different phases
when concurrently copying objects. The mutator overhead depends
on which phase the system is in. To provide information on the
relative mutator overhead in the different phases, the benchmarks
were run while the collector was forced to be in each specified
phase for the entire program execution. Figure 5 shows execution
times for the timed benchmarks when the collector is forced to
remain in specified phases. The nocopy configuration does not
perform any object copying, so the collector will always be in the

System Task Done Missed High
STOPLESS IntCopy 99.900% 0.100% 163µs

RefCopy 99.825% 0.174% 413µs
RefStress 99.659% 0.341% 287µs

STW IntCopy 99.970% 0.030% 56µs
RefCopy 4.526% 95.168% 629000µs
RefStress 5.488% 94.286% 714000µs

CPP IntCopy 99.935% 0.065% 386µs
RefCopy 99.936% 0.064% 262µs
RefStress 99.930% 0.070% 190µs

Table 2. Indicators of overall responsiveness for various garbage
collectors for problem size 256 and an event frequency of 108KHz.

� �

� �

� �

� �

� �

�

�

�

�

�

�

� � � 	
 �
 � � � � � � � � � � � � � � � 	 	 � � 	 � � �
 � � � � � � � � �
� � �

� � � � � � ! ! " # $ � � � � � � ! ! " % & "

� � � � � � ! ! ' (%) % * � � � � � � ! ! " % & + & $ * , (" -

Figure 5. Relative execution times, normalized by the nocopy
configuration, whenSTOPLESS is forced to remain in specified
phases.

idle phase. The allpin configuration forces the use of the slow path
for all pinning operations (which are commonly used for string and
array manipulations), the allprep configuration forces all the barrier
operations to use the slow path with the exception that forwarding
pointers are not considered, the allpretendcopy configuration forces
all the barrier operations to use the slow path, and the allforward
configuration pretends that all objects have forwarding pointers to
be followed. The percent of times spent in each phase is provided
in Table 3. The main overhead in the slow path is the fact that it is
outlined rather than inlined like the fast path. Given the method call
overhead, the additional work that has to be done is small.

CoCoPhases Mark-Sweep Phases
Benchmark Idle phase Pin phase prep phase copy phase forwardtrace sweep
sat 95.16% 0.62% 0.00% 3.60% 0.62%17.45% 8.75%
lcsc 80.00% 0.48% 0.00% 4.33% 15.19%76.60% 14.73%
zing 89.98% 1.31% 0.00% 8.26% 0.45%47.83% 47.78%
bartok 88.08% 0.10% 0.00% 6.01% 5.82%66.54% 32.27%
go 99.37% 0.16% 0.00% 0.47% 0.00%15.90% 11.22%
othello 97.73% 0.58% 0.00% 1.69% 0.00% 5.07% 0.58%
xlisp 96.18% 0.50% 0.00% 3.32% 0.00%16.84% 13.69%
crafty 96.81% 0.72% 0.00% 2.47% 0.00%19.09% 7.03%
Average 92.92% 0.56% 0.00% 3.77% 2.76%33.17% 17.01%

Table 3. The fractions of time spent in various collector phases during execution of the benchmarks, with CoCo running each 10th collection.
The first five phases are mutually exclusive. The trace and sweep phases may overlap with any of the other phases, but are mutually exclusive.

�

� � �

�

� � �

� � �

� � �

� � �

� � �

� � �

� � 	

� �

�

� � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 � � �

Figure 6. Ratio of execution times of benchmarks with cloning
barriers to execution times without the cloning barriers.

7.4 Advantage of cloning barriers

To show how effective it is to use the cloning barriers, we have
measured each benchmark with and without the use of the cloning
barrier. The results appear in Figure 6. Ratios smaller than 1 indi-
cate an improved performance with the optimization. TheSTOP-
LESS collector is run in the default CoCo10 configuration in these
measurements. On average, this reduces the overall execution times
by more than 20%, but sometimes it almost reduces it by a factor
of 2.

8. Related Work
Baker made the first attempt to obtain real-time copying garbage
collection [4]. His work does not support parallel programs or plat-
forms. It also requires applying read and write barriers to memory
accesses including accesses to temporary variables on the program
stack, incurring a high performance cost.

Henriksson and Roberts [19] proposed to use an advanced
Brook style [9] read barrier to reduce barrier costs and move some
work from the barriers to the collector thread. They also argued
for time-based garbage collection scheduling as opposed to the
work-based scheduling of Baker.

Cheng and Blelloch [7, 10] proposed a copying garbage collec-
tion with a bounded response time for modern platforms. Their
second paper provided several important engineering solutions
for scanning the program stack incrementally, breaking large ob-
jects etc. Finally, they proposed the widely used minimum muta-

tor utilization measure. Their real-time collector supports a mul-
tithreaded program on a multithreaded platform. However, the
program threads cannot maintain lock-freedom. First, the collec-
tor does not support the use of atomic operations required for a
lock-free program, and furthermore, the barriers are blocking. If a
thread is swapped out, then the entire system may be blocked from
making progress (busy waiting) until that thread gains CPU access
again. Also, the threads are halted simultaneously to synchronize at
several collection points.STOPLESSnever stops the threads simul-
taneously, it maintains application lock-freedom, and it supports
fine grained synchronization by applications.

The Metronome is currently the state-of-the-art in real-time
garbage collection. It is a real-time garbage collector [3] for Java,
which is currently IBM’s WebSphere Real-time Java Virtual Ma-
chine. The Metronome adopts Henriksson and Roberts’s Brook-
style barrier and a time-based collection scheduling to guarantee
good mutator utilization. To reduce the memory consumption im-
posed by a copying collector, they run concurrent mark-sweep and
partial compaction. This combination is adopted bySTOPLESS.
The Metronome’s read barrier overheads on the PowerPC are very
low. According to [6], higher overheads should be expected on the
Intel and AMD platforms that we use. The Metronome does not
currently support multiprocessing or atomic operations. Also, its
shortest pauses are within a millisecond, making it inadequate to
support real-time tasks that require periodic responsiveness with
frequency higher than 1KHz [32]. In contrast,STOPLESScan sup-
port multithreaded applications on multiprocessors, and can pre-
serve lock-freedom of real-time multithreaded applications.STOP-
LESScan also handle high frequency responsiveness at the level of
100KHz. Our techniques can be incorporated into Metronome to
enhance its ability to support multitasking and lock freedom.

Several papers have proposed using special hardware to support
real-time garbage collection. One recent such work is Click et al.’s
soft real-time collector for Azul Systems [11] which runs a mark-
sweep collector and performs partial compaction, using special
hardware to atomically and efficiently switch application accesses
from an old copy of an object to its new clone. Another recent
approach is Meyer’s real-time garbage-collected hardware system
[26].

Lock-free copying garbage collection avoids fragmentation al-
together. Herlihy and Moss described the first mechanism for lock-
free copying garbage collection [20]. However, their time and space
overhead would be prohibitive for use in modern high performance
systems. The Sapphire collector [21] is a concurrent copying col-
lector for Java programs. Sapphire eliminates many of the over-
heads of the collector of Herlihy and Moss, but it does not imple-
ment support for objects that may be written simultaneously by sev-
eral application threads. A design is proposed to handle such cases,
but it require the threads to block on memory writes while objects

are being copied.STOPLESSis designed to support frequent use of
common access to shared objects.STOPLESSassumes all accesses
potentially touch shared objects, yet it never blocks the program
threads while reading, writing or synchronizing on shared objects.

Compaction algorithms have been proposed since the 70’s [22].
Kermany and Petrank have recently presented an efficient com-
pactor called the Compressor [23] with support for parallelism and
concurrency. The concurrent Compressor has an initial phase in
which the program threads suffer from a trap storm yielding very
low processor utilization for tens of milliseconds. The compaction
component ofSTOPLESSanswers this problem for critical compu-
tation by allowing acceptable processor utilization at all times.

Concurrent collectors (e.g., [33, 12, 8, 29, 5]) and on-the-fly
collectors (e.g., [14, 13, 16, 15, 24]) have been designed since the
70’s, but except for Sapphire [21], none of them moves objects
concurrently with program execution.

9. Conclusion
We have presentedSTOPLESS: a highly responsive real-time
garbage collector that is adequate for multiprocessing.STOPLESS
is two degrees of magnitude more responsive than previously pub-
lished real-time collectors, while supporting lock-free applications
that run in parallel and use fine synchronization to coordinate their
concurrent work. At the heart of the new collector is a novel con-
current compacting procedure which supports lock freedom on a
multiprocessor. A second component of the system is a concurrent
mark-sweep collector that provide special care for lock-freedom.
STOPLESSemploys a cloning mechanism to drastically reduce the
overhead of the read-barrier. This use of cloning for garbage col-
lection was attempted for the first time and the obtained results
were compelling. Finally, we proposed a method to test mutator
responsiveness for a real-time system, and used this measure to
demonstrate the high responsiveness ofSTOPLESS.

Acknowledgments
We thank David Tarditi, Tim Harris, and the anonymous reviewers
for many helpful remarks that greatly improved this presentation.

References
[1] Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri Silbershtein. An

efficient parallel heap compaction algorithm. InOOPSLA2004.

[2] Matthew Arnold and Barbara G. Ryder. A framework for reducing
the cost of instrumented code. InPLDI 2001.

[3] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage
collecor with low overhead and consistent utilization. InPOPL2003.

[4] Henry G. Baker. List processing in real-time on a serial computer.
Communications of the ACM, 21(4):280–94, 1978. Also AI
Laboratory Working Paper 139, 1977.

[5] Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner,
Victor Leikehman, Yoav Ossia, Avi Owshanko, and Erez Petrank. A
parallel, incremental, mostly concurrent garbage collector for servers.
ACM TOPLAS, 27(6):1097–1146, November 2005.

[6] Stephen M. Blackburn and Tony Hosking. Barriers: Friend or foe? In
Amer Diwan, editor,ISMM2004.

[7] Guy E. Blelloch and Perry Cheng. On bounding time and space for
multiprocessor garbage collection. InPLDI 1999.

[8] Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly
parallel garbage collection.ACM SIGPLAN Notices, 26(6):157–164,
1991.

[9] Rodney A. Brooks. Trading data space for reduced time and code
space in real-time garbage collection on stock hardware. In Guy L.
Steele, editor,Conference Record of the ACM Symposium on Lisp
and Functional Programming, pages 256–262, 1984.

[10] Perry Cheng and Guy Blelloch. A parallel, real-time garbage
collector. InPLDI, June 2001.

[11] Cliff Click, Gil Tene, and Michael Wolf. The pauseless GC algorithm.
In First ACM/USENIX Conference on Virtual Execution Environments
(VEE’05)2005.

[12] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exercise
in cooperation. Communications of the ACM, 21(11):965–975,
November 1978.

[13] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. InPOPL, 1994.

[14] Damien Doligez and Xavier Leroy. A concurrent generational
garbage collector for a multi-threaded implementation of ML. In
POPL, 1993.

[15] Tamar Domani, Elliot Kolodner, and Erez Petrank. A generational
on-the-fly garbage collector for Java. InPLDI, 2000.

[16] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Elliot E. Salant,
Katherine Barabash, Itai Lahan, Erez Petrank, Igor Yanover, and
Yossi Levanoni. Implementing an on-the-fly garbage collector for
Java. InISMM2000.

[17] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-
word compare-and-swap operation. InDISC, 2002.

[18] Roger Henriksson. Predictable automatic memory management for
embedded systems. InOOPSLA ’97 Workshop on Garbage Collection
and Memory Management, October 1997.

[19] Roger Henriksson.Scheduling Garbage Collection in Embedded
Systems. PhD thesis, Lund Institute of Technology, July 1998.

[20] Maurice Herlihy and J. Eliot B Moss. Lock-free garbage collection
for multiprocessors.IEEE Transactions on Parallel and Distributed
Systems, 3(3), May 1992.

[21] Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying GC
without stopping the world. InJoint ACM Java Grande — ISCOPE
2001 Conference, CA, June 2001.

[22] Richard E. Jones.Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Chichester, July 1996. With
a chapter on Distributed Garbage Collection by R. Lins.

[23] Haim Kermany and Erez Petrank. The Compressor: Concurrent,
incremental and parallel compaction. InPLDI 2006.

[24] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting
garbage collector for Java. InOOPSLA2001.

[25] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel.
SIGOPS Oper. Syst. Rev., 26(2):8, 1992.

[26] Matthias Meyer. A true hardware read barrier. In J. Eliot B. Moss,
editor,ISMM’06 2006.

[27] Scott M. Nettles and James W. O’Toole. Real-time replication-based
garbage collection. InPLDI, USA, June 1993.

[28] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor
Leikehman, and Avi Owshanko. A parallel, incremental and
concurrent GC for servers. InPLDI, 2002.

[29] Tony Printezis and David Detlefs. A generational mostly-concurrent
garbage collector. InISMM, 2000.

[30] Sven Robertz. Applying priorities to memory allocation.ISMM2002.

[31] Sven Gesteg̊ard Robertz and Roger Henriksson. Time-triggered
garbage collection — robust and adaptive real-time GC scheduling
for embedded systems. InACM 2003 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), 2003.

[32] Daniel Spoonhower, Joshua Auerbach, David F. Bacon, Perry Cheng,
and David Grove. Eventrons: A safe programming construct for
high-frequency hard real-time applications. InPLDI 2006.

[33] Guy L. Steele. Multiprocessing compactifying garbage collection.
Communications of the ACM, 18(9):495–508, September 1975.

