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Abstract—Managed languages such as Java and C# are
increasingly being considered for hard real-time applications
because of their productivity and software engineering advan-
tages. Automatic memory management, or garbage collection,
is a key enabler for robust, reusable libraries, yet remains
a challenge for analysis and implementation of real-time
execution environments. This paper comprehensively compares
the two leading approaches to hard real-time garbage col-
lection. While there are many design decisions involved in
selecting a real-time garbage collection algorithm, for time-
based garbage collectors researchers and practitioners remain
undecided as to whether to choose periodic scheduling or slack-
based scheduling. A significant impediment to valid experi-
mental comparison is that the commercial implementations
use completely different proprietary infrastructures. Here, we
present Minuteman, a framework for experimenting with real-
time collection algorithms in the context of a high-performance
execution environment for real-time Java. We provide the first
comparison of the two approaches, both experimentally using
realistic workloads, and analytically in terms of schedulability.

I. INTRODUCTION

Managed languages such as Java and C# are increasingly
being considered for hard real-time applications. From both
a technical and a scientific standpoint, the most interesting
challenge this presents is how to reconcile efficiency and
predictability in the memory management subsystem of
these languages. To relieve programmers from having to deal
with deallocation of data structures and to eradicate memory
access errors, managed languages rely on garbage collection
for reclaiming unused memory. A number of time-triggered
real-time garbage collection algorithms have been proposed
in the literature and implemented in commercial products.
This paper attempts to clarify some of the confusing claims
that have been made about these algorithms in the scientific
and marketing literature. We do this analytically by compar-
ing the schedulability characteristics of the algorithms, and
empirically through a careful repetition study in which the
algorithms were independently reimplemented in a different
environment and compared on real-time workloads and
standard benchmarks.

Garbage collection is at heart a simple graph reachability
problem, operating over a directed object graph comprising
objects (nodes) and their references (links). An application
program dynamically allocates heap storage (objects) and
manipulates those objects by reference. References may be
held by the application at any time in global variables,
thread stacks, and registers. The application may also create
references between objects by storing references in the heap.
From the perspective of the garbage collector (GC), the

application program acts as a mutator of the object graph.
The job of the GC is to determine which objects are dead:
no longer reachable by the application. Dead objects can
safely be reclaimed. The remaining reachable objects are
considered to be live: accessible at some time in the future
by the application. Live objects may be defragmented.

In a real-time setting it is not practical to collect the
heap atomically with respect to the mutator, since stopping
the mutator threads may result in unacceptable GC pause
times that risk missed deadlines. Thus, real-time GCs must
work incrementally, interleaved with the normal execution
of the real-time mutator tasks. Of course, this means that
a real-time GC must cope safely with interleaved updates
performed by the mutator tasks. Not surprisingly, there are
many research challenges to designing a real-time GC algo-
rithm that is predictable, maximizes throughput, decreases
pause times, and keeps memory overheads low.

The context for our work is a Java virtual machine with
real-time GC (RTGC) and with support for the Real-time
Specification for Java (RTSJ) [1], an extension to the Java
programming language that is suitable for hard real-time ap-
plications as we have demonstrated in our previous work [2],
[3], [4]. In our RTSJ implementation, a static compiler
translates Java code into C ahead of time and then compiles
it to machine code using an off-the-shelf C compiler such as
gcc. Thus, programmers need not worry about the impact
of dynamic loading and just-in-time compilation on the
predictability of their programs. This allows us to focus on
GC. We target uni-processors in general as they represent
the majority of today’s embedded market and, in particular,
RTEMS and the LEON architecture used by the European
Space Agency for satellite controls [5].
The contributions of this paper are:

• Minuteman: We have implemented a framework for
experimenting with RTGC algorithms that provides
support for defragmentation and pluggable scheduling
strategies in a high-performance real-time execution
environment.

• Schedulability: We provide schedulability tests for
time-based RTGC algorithms including periodically
scheduled [6] and slack-based [7] GCs.

• Evaluation: We empirically evaluate these alternative
RTGC algorithms on a number of large standard bench-
marks as well as on a real-time application.

• Repeatability: Our work is the first (and only), freely
available, open source implementation of the two lead-
ing time-based RTGC algorithms.



Minuteman is the first system in which meaningful “apples-
to-apples” comparison of different RTGC algorithms can
feasibly be made, with results that are not confounded
by differences in the environment (compiler, object layout,
hardware platform, etc.) that are not relevant to GC. A
modern GC has a profound impact on aspects of the execu-
tion environment ranging from synchronization to compiler
optimizations. To evaluate a GC one must account for
indirect overheads due to choices such as data layout and
code generation. This can only be done in the context of a
complete system with representative workloads. When GCs
are implemented in different systems, it is almost impossible
to compare results as performance discrepancies may be due
to spurious differences. One of our goals was to engineer
an experimental platform that is feature-complete and close
enough in performance and predictability to production-
quality systems that it allows meaningful comparison of
different RTGC algorithms.
Links to implementation, benchmarks, and scripts can be found
at http://www.ovmj.org/minuteman.

II. REAL-TIME GARBAGE COLLECTION

The goal of a real-time GC is to bound space and time
overheads of memory management. Since many real-time
applications must operate with limited CPU and memory
resources, it is essential that the overhead of the GC be
small enough to fit in that budget and that developers be
able to reason about the impact of selecting a particular
GC algorithm on their application. The sources of space
overhead for GC are mark bits (to record reachable objects),
fragmentation due to segregated allocation, heap meta-data,
and space reserves. Time overheads come from reference
tracing, object scanning, and any object copying performed
by the GC, plus the cost of barrier operations that may be
imposed on the mutator tasks at object allocation, reads and
writes of references in the heap, and any other heap accesses.

Time predictability is often the main concern when se-
lecting an RTGC. From the point of view of a real-time
mutator task that must meet a deadline, three things matter:
(a) what is the maximum blocking time due to GC, (b) how
many times can it be interrupted by GC, and (c) what is
the worst-case slowdown due to the extra barrier checks
needed on heap reads and writes? From the point of view
of the GC task, the question is whether it can keep up
with allocation requests and ensure that the system will not
run out of memory. One important design dimension in GC
algorithms is how to schedule the GC task. The literature on
time-triggered RTGC algorithms presents two alternatives:
slack-based scheduling as first proposed by Henriksson [7],
and adopted in the Sun Microsystems Java RTS product [8],
and the periodic scheduling of Bacon, Cheng and Rajan [6]
adopted in the IBM Websphere Real-time product.

A slack-based GC is implemented as a separate real-
time thread which has a priority lower than any other real-

mutator GC

(a) Schedule without GC

(b) With slack-scheduled GC

(c) With periodic-scheduled GC

Figure 1. Sample schedules for a periodic task

time thread. This has the advantage that the GC will never
preempt a real-time thread, thus providing a simple and
easy to understand answer to points (a) and (b) above.
Complexity arises from the fact that the GC has to be
interruptible at any time by a higher-priority real-time thread,
and that there must be enough “slack” in the schedule to
leave time for the GC to satisfy the allocation operations
performed by the application. Although the GC does not
directly interfere with application tasks, there is an indirect
cost due to the compiler-inserted barriers needed to make
incremental collection possible (point (c) above).

A periodic GC uses a different approach: the GC thread
runs periodically with the highest real-time priority. This
means that, at regular intervals, GC will preempt application
threads and perform a fixed amount of GC work. Since the
amount of work performed by GC is fixed (say 500µs) and
the intervals are known a priori, it is possible to come up
with an answer to questions (a) and (b). As for (c), there
are also compiler-inserted barriers because the GC must
be incremental. The difference between the approaches is
illustrated graphically in Fig. 1. Note that there was no GC
activity in the middle of the schedule, since all GC work
was over. The following GC cycle started during the last
period shown in the schedule.

While these approaches are not mutually exclusive (as
shown by [9]), there has not been a clear comparison of
the tradeoffs involved in selecting one over the other. The
fact that the two production real-time environments for
Java have implemented distinctly different alternatives with
drastically different internal structure, makes benchmarks
hard to compare.

III. THE MINUTEMAN RTGC FRAMEWORK

We have implemented a framework for experimenting with
uniprocessor RTGC algorithms called Minuteman. Our
framework is built on top of the Ovm real-time Java virtual
machine. It is implemented, like the rest of Ovm, in Java,



and compiled to C by an ahead-of-time compiler. Thanks
to restrictions placed on the reflective abilities of programs,
we are able to statically compile the VM together with all
application code and the needed libraries into a single binary
executable for the target platform. A detailed description
of Ovm can be found in our previous work [2]. Ovm
implements most of the Real-time Specification for Java [1]
and has been deployed on UAVs in a collaboration with the
Boeing Company.

The Minuteman framework supports a wide range of
GCs that differ in scheduling, incrementality, defragmen-
tation, predictability of barriers, and the representation of
arrays. Scheduling options include slack, periodic, and a
combination of both. Incrementality support ranges from
non-incremental collection, through selective incremental-
ity of different GC operations, up to full incrementality
with incremental stack scanning. Defragmentation can be
disabled (non-moving GC), or it can be enabled using
Brooks forwarding pointers [10] or replication [11]. Barriers
enabling incremental collection can be optimized either for
throughput or for predictability. Arrays can be represented
either using contiguous memory areas or split into displaced
parts called arraylets [6].

For this study we select a GC that is a defragmenting,
mostly non-copying, mark-and-sweep snapshot-at-the begin-
ning Yuasa style [12] GC with weak tri-color invariant.
The GC is fully incremental with defragmentation using
Brooks forwarding pointers [10], barriers optimized for
predictability (with minimum branches and activated at all
times, even outside of the GC cycle), and arrays represented
using arraylets. We build in support for periodic and slack
scheduling, allowing us to compare the two in otherwise
identical configurations. We provide more details below.

A. Collection Cycle

Our GC is implemented in a single real-time thread as a
loop repeating the following steps. Each repetition is called
a GC cycle:

1. waitUntilMemoryIsScarce
2. scanStacks
3. markAndCleanHeap
4. cleanStacks
5. sweep
6. defragment

The GC periodically modifies the state of the heap, main-
taining particular invariants at each step. The key invariants
are formulated in terms of object color (white, grey, or
black) and pointer classes (clean, dirty). The meaning of
colors is that white is unreachable, and black and grey are
reachable. A pointer is dirty if it refers to the old location
of an object that moved during defragmentation. Brooks
forwarding pointers ensure that the mutator always uses the
new location of a moved object. Each Java object has an

additional field to store the forwarding pointer. A read barrier
makes sure that this indirection is always followed before
the pointer is used. For instance, every field assignment
x.f=exp will be translated into x.forward.f=exp.

1. waitUntilMemoryIsScarce: At this stage, all existing
objects are black, and new objects are allocated black.
Any pointer can be dirty. The GC waits until the available
memory falls below a predefined threshold. This threshold
must be large enough to ensure that there is enough memory
left for allocations by the mutator that may occur before
the GC can actually free sufficient memory (stage 5). It
must also cover the allocation needs of the GC itself during
defragmentation (stage 6).

2. scanThreads: Start graph traversal. First, the values
representing black and white are flipped, atomically making
all objects in the heap white. The allocation color is now
black. The GC’s goal is to reclaim all unreachable objects
that existed when the traversal started, while making sure
no live object is reclaimed accidentally. This is achieved
through the weak tri-color invariant enforced by the Yuasa
barrier for the heap and the Dijkstra barrier for the stack.
The weak tri-color invariant states that if a white object is
pointed to by a black object, it must be also reachable from
some other grey object through a chain of white nodes. The
Yuasa barrier is added by the compiler to every store of
a pointer into the heap. It captures the old pointer held at
that location (before the store) and marks its target grey.
This ensures that pointer stores do not remove a path from
a grey object to a white object, regardless of whether the
white object is actually referenced from a black object. The
Yuasa barrier cannot be used for stack accesses. To prevent
violating the weak tri-color invariant for references held in
the stack, a Dijkstra barrier is added to every pointer store to
a heap location. It marks (grey) the target of the new pointer
being stored to that location. This ensures that no black
object can ever point to a white object. The Dijkstra barrier
makes scanning of stacks for pointers interruptible between
threads but scanning a single thread is atomic. Luckily stack
scanning is fast in Ovm due to the use of pointer stacks [13].
The target of each pointer in the stack is simply marked grey.

3. markAndCleanHeap: Grey objects are scanned one by
one, marking all reachable objects grey, and marking all
scanned objects black. Scanning objects (including arrays)
is fully incremental. As objects are scanned, all dirty pointers
they contain are fixed to point to the forwarded location, so
that after the whole heap is scanned, all pointers in the heap
are clean. When marking, the new location of an object is
marked. The old location, if any, is left white. To prevent
dirty pointers from spreading into already-scanned objects,
either from unscanned objects or from the stacks, dirty
pointers are also fixed in the write barrier. This is strictly
necessary only until the stacks are clean (next step), but the



code to do so is permanently compiled into the write barrier
for predictability. In any case, the mutator must be prepared
to see both clean and dirty pointers for the same object,
and thus even pointer comparison must follow the Brooks
forwarding pointers. Global variables are scanned similarly
to grey objects; global data is always assumed live. With
the heap now clean, there are only white and black objects.
White objects are garbage, black objects are assumed live,
although some of them might have died since the GC cycle
started.

4. cleanStacks: Because the heap is now clean, no more
dirty pointers can be loaded to the thread stacks, and thus
the stacks can be fixed to point to the forwarded location of
moved objects. Fixing is again atomic with respect to each
thread, but can be interrupted after each stack is fixed.

5. sweep: Now the mutator only has access to black
objects and to new locations of objects. The white objects
(garbage and old locations of objects evacuated during the
last defragmentation) are reclaimed and the memory they
occupy is made ready for re-use. This involves some house-
keeping of free memory and, since Java requires all allocated
storage to be zeroed, also zeroing the freed memory. The
sweep operation can be interrupted at almost any time. This
is achieved by making sure the allocator cannot see memory
that is not yet ready for re-use. Memory organization is
relatively complex in order to reduce fragmentation and
minimize the amount of work done during defragmentation.
All memory is divided into equal-sized pages (2K). These
pages can be used directly as arraylets or for large non-
array objects, or they can be further partitioned for allocation
of small objects. Large non-array objects can create both
external and internal fragmentation, but they are rare in
real applications1 With arraylets, arrays cause no additional
fragmentation over small objects: all space in the arraylets is
actually used by array data, the excess data smaller than an
arraylet is stored in a small object called the spine, together
with pointers to the arraylets. Small objects are rounded up
to a predefined set of object sizes. Within a single page,
only small objects of the same (rounded-up) size can be
allocated. Page size is not always a multiple of (rounded-
up) object size, and thus there is some wasted space per
each page. The amount of this fragmentation versus the
amount of object internal fragmentation can be controlled
by tuning the number of supported object sizes. Moreover, it
is proportional to the number of live objects and is relatively
small.

Yet another kind of fragmentation is caused when only a
few objects in a page die, while the others are still live. These
empty slots can be re-used, but not for another object size.
Thus, an unlucky sequence of allocations can lead to running

1We measured that in the Dacapo, SPECjvm98, and pseudo-JBB appli-
cation benchmarks, the largest non-array object uses only 432 bytes.

out of memory in a system with little memory actually used.
This is why the GC implements defragmentation.

Free slots are organized in general as segregated free
lists. However, when the allocator needs a new page for
small object allocation, it then allocates from that page
sequentially by incrementing a pointer (so-called bump-
pointer allocation). Thus, free lists are only initialized during
sweep by the GC, as it discovers pages that contain both live
and dead objects.

6. defragment: The heap now contains only black objects,
the allocation color is still black, and all (live) pointers in
the system are clean. Each object has only a single copy.
However, pages containing small objects may be fragmented.
Defragmentation is only started if the amount of free mem-
ory is below a defined threshold. Starting defragmentation
too early is a waste of time, and starting defragmentation too
late can be a problem as it temporarily reduces the amount
of free memory. Defragmentation starts with a size class for
which most memory can be freed by defragmenting: moving
objects from less occupied pages to more occupied pages.
Each size class has a list of non-full pages, which is also
used by the allocator. The defragmenter incrementally sorts
this list in order of decreasing occupancy. Then it follows
by copying the objects from the tail of the sorted list (least
occupied pages) to the head (more occupied pages). This
operation is incremental (except for the copying of each
small object) and does not harm the mutator. Finalization
is somewhat subtle, since the mutator may quickly re-use
the space intended as target for evacuation. In that case,
the defragmenter bails out and moves to the next size class.
In the worst case, the defragmenter would bail out from
every size class (by default, the GC has 28 size classes).
After copying an object, the defragmenter (still atomically)
updates the forwarding pointers, so that the new copy of
the object points to itself and the old copy points to the
new copy. The evacuated pages will become re-usable for
allocation during the sweep phase of the following GC cycle.

IV. SCHEDULABILITY ANALYSIS

We base our schedulability analysis on schedulability tests
that allow modeling of periodic tasks in a synchronous
system with any allocation of static priorities and without
locking [14], [15]. Tasks are identified by integers, which
are also their priorities, 1 (highest) to n. If Ci is the worst-
case computation time per invocation of task i and Ti is the
period and deadline, the maximum response time Ri occurs
when all tasks are released for execution simultaneously with
task i:

Ri = Ci +
i−1

∑
j=1

(⌈
Ri

Tj

⌉
C j

)
(1)



The recurrence is solved iteratively as follows:

R(0)
i := 0

R(n+1)
i := Ci +

i−1

∑
j=1

(⌈
R(n)

i
Tj

⌉
C j

)
.

The system is schedulable iff for every task i the iterative
process converges to a finite fixed point Ri, such that Ri < Ti.

The intuitive explanation of (1) is that task i may need
up to Ci time units to do the actual work, but can also be
preempted by any higher priority task j < i. If preempted,
the worst-case computation time of each higher priority task
adds to task i’s response time.

A. Schedulability and Garbage Collection

We assume the GC to be a periodic task with fixed period,
Tgc. The period is chosen to be equal to the GC cycle which
spans from the time GC activity starts until all unreachable
objects have been freed. The work to be done by the GC
depends on the memory operations performed by mutator
tasks: each time the application allocates, loads from, or
stores to heap pointer variables, work needs to be done
by the GC. To capture the dependency between mutator
actions and the GC, following Henriksson [7], we expect
to know the worst-case amount of GC work, Gi (in time
units), that a single invocation of a task i can generate.
We also expect to have an upper bound to the “constant”
GC work per cycle, G0, which covers scanning of stacks
and global variables (note that while this work isn’t exactly
constant, it is not dependent on the operation performed by
the mutator). To capture the space requirements of GC, we
need to know the size of the heap, H, and the maximum
amount of live memory at any instant during any possible
execution of the application, Lmax. We also need to know the
maximum amount of allocation, Ai, per invocation of task i.
Note that the GC period (GC cycle), Tgc, can be computed
iteratively given the parameters (using the analysis we show
later), such that the system is schedulable. The parameters
are summarized in Tab. I.

The tests depend on two additional derived values: the
maximum GC work Gmax(Tgc) and the maximum allocation
Amax(Tgc) per cycle.

Table I
INPUT PARAMETERS FOR SCHEDULABILITY ANALYSIS

Ci [seconds] computation time task
Ti [seconds] period task
Ai [bytes] allocation task
Gi [seconds] GC work generated task
H [bytes] heap size system
Lmax [bytes] live memory system
Tgc [seconds] GC cycle duration (GC period) system
G0 [seconds] GC cycle overhead system

When Tgc is a multiple of the hyper-period (lcmi=1..n(Ti))
and all tasks are started simultaneously, a simplified equation
can be used to compute Gmax(Tgc) and Amax(Tgc).

Gmax(Tgc) = G0 +
n

∑
i=1

(⌈
Tgc

Ti

⌉
Gi

)
Amax(Tgc) =

n

∑
i=1

(⌈
Tgc

Ti

⌉
Ai

)

This equation can lead to longer GC cycles (in order to
align them to the hyperperiod) and thus higher memory
requirements. In general, the estimates must take into ac-
count the fact that we do not know how the generation of
allocation/GC work is distributed within the execution of
each task. We thus have to assume the highest possible
number of (potentially partial) task invocations during a
GC cycle, where all the GC work is bunched. The general
equations are:

Gmax(Tgc) = G0 +
n

∑
i=1

(⌈
Tgc

Ti

⌉
+1
)

Gi (2)

Amax(Tgc) =
n

∑
i=1

(⌈
Tgc

Ti

⌉
+1
)

Ai (3)

In summary, there are three tests for a system with GC:

TST-1: mutator tasks meet their deadlines;
TST-2: GC meets its deadline (keeps up with tasks that

use memory);
TST-3: the system will not run out of memory with the

given heap size.

Only TST-3 can be formulated independently of GC schedul-
ing. We can find an upper bound, Tgc, on the GC cycle
duration (GC period) that ensures that all allocation requests
during a GC cycle can be fulfilled. We use a bound based
on Robertz and Henriksson’s [16], which we refine to the
general case where Tgc is not a multiple of the hyper-period:

Amax(Tgc)≤
H −Lmax

2
(4)

It is easy to see that the condition is necessary for the
system not to run out of memory in the way captured by
TST-3, because memory allocated (black) during a cycle,
floating garbage, can only be freed by the end of the
following cycle. Robertz and Henrikkson [16] and Schoe-
berl [17] show that this is also a sufficient condition. The
intuition behind the proofs is as follows. The worst case is
when the amount of live memory is Lmax for all cycles.
Also, the maximum amount of floating garbage Gmax is
the maximum allocatable memory in the previous cycle
(Gmax = Amax(Tgc)). The system does not run out of memory
as long as Gmax + Amax(Tgc) + Lmax = H, and thus (4) is
sufficient.



1) Slack GC: Mutator task deadlines, TST-1, are checked
as if there was no GC, because the GC has the lowest priority
in the system, and thus does not influence response times
of the mutator tasks. The GC response time, TST-2, can be
calculated as follows:

Rgc = Gmax(Tgc)+
n

∑
i=1

(⌈
Rgc

Ti

⌉
Ci

)
(5)

This recurrence is indeed very similar to the tests for
mutator periodic real-time tasks: Gmax(Tgc) is the maximum
computation time during the GC cycle and the second term
denotes that the GC can be preempted by any mutator task in
the system. The iterative process to find Rgc is also similar,
except that here we can safely start with R(0)

gc := ∑
n
i=1 Ci.

2) Periodic GC: A periodic GC is scheduled based on
a time schedule, independently on the mutator tasks, pre-
empting them if necessary. The schedule thus impacts both
TST-1 and TST-2.

The schedule is designed such that GC pause times
are small (e.g., 500 µs) and that over a long time inter-
val, the minimum mutator utilization (MMU) [18] is at
least a given target utilization (e.g., u=0.7). To bound the
pause times, the schedule never allows the GC to run for
more than a single time quantum (= maximum GC pause
time). To bound the utilization, the schedule ensures that
from each time window2 (e.g., 10ms - 20 time quanta),
the fraction of time quanta for the mutator is at least u
(e.g., 14 quanta for u=0.7). To achieve these goals, the
schedule is a sequence formed by a repeating pattern (e.g.,
MCMCMCMCMCMCMMMMMMMM). If a GC does not have work
to do, the mutator runs, but not vice-versa – the GC cannot
use slack.

We formulate the schedulability analysis using functions
mmu(t) and mcu(t), which, based on the schedule, give the
minimum utilization [18] of mutator and GC, respectively,
for an interval of length t. These functions are defined by the
time schedule and can be computed accordingly by a pro-
gram, but it is unlikely that they could be expressed precisely
by a nice closed-form formula. For large t compared to the
window size, we can however approximate these functions
using target utilization u only, ignoring the schedule, as
follows: mmu(t) = 1−mcu(t) = u.

The task response time depends on mmu and on the
maximum amount of work per cycle (for TST-1):

Ri = Ci +
i−1

∑
j=1

(⌈
Ri

Tj

⌉
C j

)
+ (6)

min
(

(1−mmu(Ri))Ri,

⌈
Ri

Tgc

⌉
Gmax(Tgc)

)
The time added by GC (the last term) can be the maximum
time the GC can steal from the mutator during Ri, which

2We never use the term period for time window to avoid confusion with
task periods.

is (1−mmu(Ri))Ri. However, as expressed by the second
argument of min, if the GC cycle is smaller than Ri and the
GC does all its work in a cycle, it will no longer be stealing
time from the mutator.

The GC cycle worst-case response time, TST-2, can be
calculated as:

Rgc =
1

mcu(Rgc)
Gmax(Tgc) (7)

The iterative process starts with R0
gc such that mcu(Rgc) > 0

(i.e., the periodic scheduler window size).

B. Examples

We illustrate the use of these schedulability equations with
two extreme cases. The first example, Tab. II, is adapted
from [7].

Table II
INPUT PARAMETERS FOR EXAMPLE “SLACK WINS”

i Ti Ci Ai Gi
1 10 3 72 1
2 50 9 302 5
3 95 21 256 4

Lmax G0 H Tgc
300 10 25500 730

Let’s check if the example is schedulable. First, we check
if mutator tasks always meet their deadlines (this is still
classical scheduling theory [14]). For this we need Cis and
Tis from Tab. II. The iterative solution of (1) gives the
response times and reveals the mutator tasks are schedulable:

R1 = 3 < 10 = T1

R2 = 15 < 50 = T2

R3 = 45 < 95 = T3

Next, we test if GC can keep up with the mutator. In addition
to Ci and Ti, we also need Gmax(Tgc), which in turn requires
G0, Gi, and Tgc. From (2) we get Gmax(730) = 10+75 ·1+
16 ·5+9 ·4 = 201. Solving (5) we get Rgc = 720 < 730 = Tgc,
which means that the GC can keep up with mutator. Last,
we must check that the system does not run out of memory.
For this we need Tis, Ais, H, Tgc and Lmax. From (2) we
get Amax(730) = 12536, which satisfies (4): 12536 < 12600.
The system thus does not run out of memory.

The example is however not schedulable with periodic GC
as task 3 misses its deadline.

Now, consider the example of Tab. III with a periodic
GC. Solving (6) gives task response times of 13 and 927.
Mutator tasks are thus schedulable. The upper bound for Tgc
is 149 given the available heap size. The system thus will
not run out memory during the GC cycle. For TST-2 we
need to solve (7): Rgc = 127, which is well within the GC
cycle length. Indeed, the slack GC could never make the GC
deadline, as the GC cycle is shorter than the period of one



of the tasks. This example is thus not schedulable with a
slack GC.

Table III
INPUT PARAMETERS FOR EXAMPLE “PERIODIC WINS”

i Ti Ci Ai Gi
1 50 9 302 5
2 980 490 65 4

Lmax G0 H Tgc
300 10 3000 140

V. EMPIRICAL EVALUATION SETTINGS

We prepared our empirical evaluation so that we can
compare periodic and slack scheduling in Minuteman. To
show that our GC is roughly comparable to the state-of-the
art implementations, we also measured the periodic real-
time GC implemented in the IBM WebSphere Real-Time
Java Virtual Machine (J9) and the slack GC of the Sun
Microsystems Java Real-Time System (RTS). Although RTS
implements much more complex RTGC algorithm than slack
scheduling [19], it effectively behaves like slack scheduling
for hard real-time threads and the experiments we ran. We
ran our experiments on a uniprocessor Intel Pentium 4
machine with Linux 2.6 patched for real-time.

A. Real-Time Collision Detector

For the empirical evaluation, we use our Real-Time Collision
Detector (RCD) benchmark [20]. The key component of this
benchmark is a periodic real-time task that detects potential
aircraft collisions based on radar frames. Each invocation
of the task takes a new radar frame which contains up-to-
date locations of aircraft with their identifications, computes
current motion vectors based on the previous know locations
of the aircraft, and then uses the motion vectors to detect
collisions. The detection algorithm has two stages: in the first
stage the detector identifies smaller 2-d quadrants containing
multiple aircraft, while in the second stage it performs 3-
d detection in these quadrants. We use a version of the
benchmark that pre-simulates all radar frames before the
detector is started, to minimize interference and unwanted
time dependencies. We use the RTSJ scheduling and timer
API, but perform all allocation in the heap (no scopes or
immortal memory).

The benchmark reports response times of the collision
detector, which are measured from idealized release times
(no jitter, ideal timer). The idealized release times are
defined by absolute start time, which is rounded to avoid
phase-shift of real timers [21], and by the period. We use a
10 ms period, which matches the periodic scheduler window
size.

We also use two different workloads, M and V. We
dimension the M workload so that Ovm, J9, and RTS
can all successfully run it. It has fewer aircraft (19), no
collisions, no background noise – only the detector task is

running during the measurement – and a very large heap.
A smaller heap size however causes one of the production
systems to run out of memory. For this workload, we disable
defragmentation in Ovm to be closer to the production
systems.

The V workload is designed to be more challenging: it
has 80 aircraft with actual collisions, runs the SPECjvm98
javac benchmark as background noise, and has a smaller
heap. Moreover, the javac benchmark run in the background
triggers defragmentation, which is enabled in Ovm for this
workload.

To make the benchmark reasonably challenging for GC,
we add a simple allocation noise generator into the real-time
detector task. The noise generator allocates a given fixed
number (i.e., 5000) of 64-byte objects per task invocation.
Pointers to the objects are stored into a cyclic buffer for
1 million objects, so that over 2000 invocations, 5000 of
these objects die at each invocation. To focus on steady state
performance, we skip the first 2000 invocations. We evaluate
data from 8000 invocations (corresponding to about 80s of
wall clock time). To average out start-up non-determinism,
we repeat executions (the numbers of repetitions differ for
each experiment, as explained later).

In the V workload, we increase the amount of GC work
generated even more. Instead of a constant object size,
the allocations follow a predefined pattern, parameterized
by maximum allocation request size and an allocation size
increment.

B. GC Scheduler Configuration

The periodic schedulers (both Ovm and J9) use a 10ms
window, 500µs quanta, a 1ms maximum pause time, and
u = 0.7 target MMU. The slack schedulers (both Ovm and
RTS) are configured so that GC runs at a lower priority
than the real-time detector task. For the V workload (Ovm
only), we run the slack scheduler with a priority above the
background noise. Without this the slack scheduler would
ultimately run out of memory, because the background (non-
realtime) noise does not have enough slack. This necessarily
favors the slack scheduler over periodic.

VI. EMPIRICAL EVALUATION RESULTS

We compare periodic and slack scheduling using three differ-
ent metrics: MMU, maximum response time, and maximum
amount of allocation noise that can be injected reliably.

A. Minimum Mutator Utilization

Target MMU is a parameter that controls the behavior of
the periodic scheduler. Originally, it was proposed [18] as
a metric that characterizes the quality of real-time GC.
Although MMU can be used to bound worst-case response
times and prove that deadlines cannot be missed, as we have
shown for the periodic GC, a GC with better MMU does
not necessarily perform better in a hard real-time setting.



This fact is demonstrated in Fig. 2. The MMU of our
implementation of the periodic scheduler converges to the
ideal case and target utilization of 0.7. Conversely, the slack
scheduler has very poor MMU, with maximum pause time
almost 10ms. The key problem of MMU as an evaluation
metric for hard real-time is that it cannot capture that the
almost 10ms pause time happens only when the mutator
cannot run, and thus does not interfere with task response
times.

Another general problem of MMU, if based on when
mutator or GC threads are running, is that it puts an
imprecise boundary between mutator and GC. It charges
allocation costs and costs of memory-related operations (i.e.,
heap and stack accesses and their associated barriers) to
the mutator. However, these costs are a major feature of
the GC design with clear tradeoffs: they can be distributed
among mutator and GC tasks to a large extent. Thus, MMU
is not good for comparing different GCs because the costs
of those GCs charged to MMU are part of the GC design.
However, this is not an issue in our experiments with
Minuteman, which allows us to change only the scheduling
of collection, while leaving the barrier costs the same, so
that the mutator/GC overheads remain fixed. Finer-grained
accounting of mutator and GC activity has recently been
introduced with the Metronome-TS GC [9].

B. Response Time

The response time is a much more suitable metric for hard
real-time performance. Fig. 3 shows the response times of
slack and periodic schedulers with the M workload. For
each scheduler, we provide a histogram of the measured
times, as well as box-plots. We perform 50 executions of the
benchmark (400,000 measurements), recording maximum
times (red triangle) and minimum times (green bullet) over
all 50 executions, which characterize the true extremes on
our system.
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Figure 2. Minimum Mutator Utilization

The results show that periodic scheduling with Ovm gives
about the same best response times as slack scheduling, but
worse median as well as maximum response times. Note
that the overhead in response times can be easily explained
by the periodic GC schedule. From the results of slack
scheduling, the mutator runs up to between 4 and 4.5 ms
per detector release, which is nine 500µs quanta. According
to the periodic GC schedule, these 9 mutator quanta will
be interleaved by 6 GC quanta, slowing down the mutator
by 3 ms. Hence, the maximum response time for periodic
scheduling is between 7 and 7.5 ms, which matches the
results in the figure. Similarly, in the median case, the
mutator needs 6 quanta, thus will be delayed by 4 GC
quanta (2 ms), hence the median response time for periodic
scheduling is about 2ms longer than for slack scheduling.
In the best case, the GC is not needed (the system waits
for next GC cycle to start), and thus response times of both
periodic and slack are the same.

Ovm is within reasonable range of the performance of
the product implementations. These results should however
not be used for direct comparison of the two production
systems, as we did not (and could not) make sure that they
were configured optimally and fairly for such comparison.
For the same reason, the comparison of the products to Ovm
is only approximate.

Fig. 4 shows the response times of the slack and periodic
schedulers in Ovm with the V workload. Note that the
overhead of periodic can again be explained by the schedule
of the periodic scheduler. From the slack numbers, we know
that the GC takes about 11 quanta maximum (6 is median)
per task invocation. A periodic scheduler would thus give
6 quanta (5 median) to the GC, creating a 3ms (2.5 ms
median) overhead, which matches the measured results. The
minimum response times are almost equal, which can be
easily explained by the lack of GC activity during the best-
case detector releases. The production VMs could failed on
this workload.
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Figure 3. Response times for M workload
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Figure 4. Response times for V workload

C. Stress Test

To compare the robustness of each scheduler, we have
run tests with different amounts of noise generated in the
detector thread (Fig. 5 and Fig. 6). The magnified data points
denote the highest amount of noise when all executions have
succeeded (i.e., not missed a deadline and not run out of
memory). With the M workload, Ovm periodic was only
failing by missing deadlines and Ovm slack only by running
out of memory. J9 and RTS were failing mostly by running
out of memory, but deadline misses were also present.

With the more memory intensive V workload, all observed
failures were running out of memory. However, neither J9
nor RTS could run this workload even for the smallest
stress level. Moreover, RTS could not be configured for pure
slack scheduling with the background noise (due to memory
reservation and priority boosting features). Still, even with
these features, RTS could not run even with the lowest stress
level.

The results show that slack schedulers are more robust
than periodic schedulers, and also that Ovm is more robust
to increased allocation noise than the products. Slack sched-
ulers have better maximum response times than periodic and
the products have better maximum response times than Ovm.

Anecdotally, in our experiments with Ovm, we observed
rare but large pauses, about 40ms, that we could not explain
at first. After careful study we found out that they were
caused by the operating system discarding a memory page
containing code. Reloading the page from disk generated the
pause. Luckily, instruct the OS to lock all pages when they
are first mapped fixed the problem.

D. Relative GC Overheads

We have measured overheads of the GC that we used for
the comparison of slack and periodic scheduling over a
non-incremental GC without any barriers. These overheads
(Table IV) quantify the price for turning a non-real-time GC
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into a real-time one. The percentage overhead o(c,b) of GC
configuration c running benchmark b is calculated as

o(c,b) = 100∗ met(c,b)−met(cnonrt,b)
met(cnonrt,b)

,

where met(c,b) is mean execution time of benchmark b with
GC configuration c over a number of iterations, selected on
a per-benchmark basis, and configuration cnonrt is of non-
incremental GC without any barriers. We also include a ge-
ometric mean gmo(c) of the overheads over all benchmarks,
which we calculate as

gmo(c) = exp

(
1

#bench
∑
b

ln
(

met(c,b)
met(cnonrt,b)

))
−1.

The results are obtained with selected benchmarks from
the Dacapo and SPECjvm98 suites. Both suites include a
diverse set of real and non-trivial applications from multiple
domains, which are run on large data sets [22]. Excluding



Table IV
PERCENTAGE OVERHEADS OF A REAL-TIME GC (SMALLER IS BETTER)

Base RT Arraylets Defr. Defr.&Arr.
Antlr 1 21 40 58
Bloat 25 51 140 112
Fop 3 16 34 43
Hsqldb 27 59 79 89
Luindex 8 27 44 66
Lusearch 1 -2 41 33
Pmd 16 30 43 52
Xalan -1 2 12 14
Compress -1 42 44 60
Db 11 26 16 30
Jack 6 52 24 68
Javac 19 65 39 93
Jess 13 66 22 73
Mpegaudio 4 48 54 82
Mtrt 3 24 12 30
Geo-Mean 9 34 40 58

standard libraries, the numbers of loaded methods are 152-
1011 (SPEC) and 494-2433 (Dacapo) [22]. The source
code size of the Dacapo benchmarks is 850,000 lines of
code (excluding libraries). Workload characterization of both
SPEC and Dacapo benchmarks in respect to GC behavior
has been provided in the DaCapo technical report [22].

On geometric average over all benchmarks, the overhead
of a full RTGC (defragmentation and arraylets) is 58%.
Independent overheads of arraylets and defragmentation are
both similar and still relatively high, 34% and 40%. The
overhead of incrementality alone is much smaller, only 9%.
The results also suggest that the overheads are strongly
benchmark dependent.

VII. RELATED WORK

Henriksson derived an initial schedulability analysis for a
slack mostly-concurrent two-space copying GC [7], which
he then extended [16]. The core of the extended analysis
applies, as shown in [17], to any slack based single-heap
GC, and thus we also use it in this paper. In this analysis,
the GC is scheduled as a periodic task with lower priority
than all other hard real-time tasks. One period of the GC
corresponds to one GC cycle. The analysis applies to non-
compacting and certain compacting GCs, however it does
not apply to our GC with compaction enabled. It is an
outstanding problem to find tractable memory bounds for
Metronome-style compacting GC.

The GC proposed by Henrikkson [7] however has a
significant weakness for hard real-time deployment. All
live objects must be copied during collection, including
large arrays. The GC must not prevent hard real-time
tasks from running, and thus it can be interrupted even
when copying. The GC must then restart the copy from
the beginning because the mutator may have changed the
original object. Frequent aborts slow down the GC, risking
running out of memory. Moreover, GC progress is not
guaranteed. This problem should either be addressed in

schedulability analysis, proving that a system does have
progress and does not run out of memory (based on the
largest possible object that can be in the heap at any time),
or in the implementation by avoiding the need for restarts
or large memory copies. In other copying GCs, the need
for restarts of copies is sometimes avoided by putting more
responsibility on the mutator. In [23], a software barrier
is proposed that redirects writes to the correct location,
even if the object is being currently copied. The software
solution however has a significant overhead [24]. Smaller
overheads were obtained by implementing the redirection
using the memory hardware [24]. A similar solution for
copying GCs is always to access old copies of objects and
store modifications to a mutation log, which can be later
replayed by the collector [11]. This nicely integrates into
generational collectors, because they already have mutation
logs.

Further extensions to schedulability analysis for a
Henriksson-style copying GC assume that the GC is an
aperiodic task running using a polling server at arbitrary
fixed priority (not necessarily the lowest or highest priority
in the system) [25]. The traditional definition of the polling
server is modified, so that an aperiodic task does not have
to be ready at polling time to be serviced – it can get the
(rest) of the server capacity even when it is ready after the
polling time, but before the server runs out of capacity. The
modified version of the polling server also differs from the
deferrable server [26], because the server capacity is reduced
while the server is waiting for an aperiodic task to be ready.

This work focuses mainly on estimation of worst-case
response times for an aperiodic task being run using a
polling server, which is of general use for real-time sys-
tems. However, it does not address estimation of worst-case
execution times for the GC in a GC cycle. Analysing GC
response time as an aperiodic task is itself already far more
complex than Henriksson’s analysis [16].

The work is theoretical, with no tie to any existing GC
implementation, though a version of the copying GC like
Henriksson’s is assumed. It explicitly ignores problems with
re-starting object copying. Being scheduled by a polling
server, GC scheduling is somewhat similar to periodic
scheduling as used in existing GCs and as we describe it (if
the polling server has the highest priority in the system). It
also shows the advantage of periodic over slack scheduling,
where a GC cycle being too long results in high memory
requirements. However, a single polling server can only
accurately describe a trivial interleaving of mutator and GC
targeting 0.5 utilization, which is not used in today’s periodic
GCs. Modeling the GC as an aperiodic task as opposed
to a periodic one is more realistic, though drastically more
complex.

Schedulability analysis for systems with RTGC has also
been explored by Kim et al. [27]. Again, a Henriksson-
style copying two-space GC is assumed, with some proposed



improvements. The GC work is modeled as an aperiodic
task run using a sporadic server, at the highest priority
in the system. Again, this model is similar to existing
implementations of periodic scheduling for GC, but does
not allow time schedules used by current periodic GCs. The
work is evaluated using trace-driven simulation. It is unclear
if the GC itself has been prototyped.

Metronome [6], [28] is the implementation of periodic
GC in IBM’s WebSphere Real-Time (J9) product. Although
the original prototype implementation of Metronome in an
older version of Jikes RVM had defragmentation, the current
implementation does not and may suffer from fragmentation.

The published empirical evaluations of Metronome focus
on verifying the intended low pause times and the MMU
distribution. Although these are indeed important for schedu-
lability of systems with this type of GC, to our knowledge,
we are the first to actually provide schedulability analysis
together with memory requirement bounds that apply to
Metronome.

Metronome-TS [9] combines slack and periodic schedul-
ing. It can use slack, if available in the system, but also
can steal some mutator quanta as in periodic scheduling.
When enough slack GC work has been done to make sure
the system will not run out of memory, the GC does steal
quanta from the mutator, thus improving the response times
of real-time tasks. This hybrid can perform better than
both slack and periodic, but a schedulability analysis that
could provably show this remains an interesting outstanding
problem.

Siebert [29] implemented another style of real-time GC
for Java. His GC is work-based – there is no explicit GC
thread to schedule – instead each operation performed by
the program (read, write, allocate) does a fixed quantity of
collection work. While this style of GC has been dismissed
by some as less efficient, there has been no head-to-head
comparison with time-triggered GCs.

Generational GCs take advantage of the common gener-
ational behavior of applications, where young objects tend
to die quickly, while older objects tend to survive several
collections. These GCs collect two or more generations of
objects independently, reducing the overhead of the collec-
tion, as the old generations do not have to be collected as
often as the young ones. Even non-incremental generational
GCs may thus have smaller pauses than non-generational
GCs. The problem for hard real-time, however, is that not all
applications have always the generational behavior, and thus
small pauses would not be granted. Still, incremental gen-
erational collection can be plugged into an RTGC to reduce
the GC overhead for applications that do have generational
behavior [30]. Other applications, however, can suffer from
slow-down and/or increased memory requirements [30].

VIII. CONCLUSION

Hard real-time systems are designed to meet their deadlines
and stay within their memory budget. GC must not get in
the way of either requirement. Here, we have investigated
the impact of scheduling policies on GC behavior. We
have focused on time-triggered real-time GC algorithms and
the two fundamental approaches to scheduling them: time-
based and slack-based scheduling. Both approaches are used
in commercial products and are now being deployed in
applications.

We have developed schedulability tests for both ap-
proaches and demonstrated that they have distinct limita-
tions. In some cases, a system may be schedulable by only
one of the scheduling policies. These results suggest that
choosing the scheduling strategy is a key part of the design
of real-time applications that use GC. Our implementation in
the Minuteman framework on top of Ovm validates our re-
sults and shows that scheduling strategy does indeed matter.
In order to present a fair comparison of both approaches we
have reimplemented them independently. We have compared
the performance of our framework with commercial Java
VMs to ensure that ours is representative.

Our experimental results let us draw a number of im-
portant conclusions. First, the minimum mutator utilization
metric proposed in previous work as a way to characterize
RTGC does not accurately depict the results of slack-based
scheduling. Second, all application threads are affected by
the GC design due to barriers inserted by the compiler
on memory accesses. We have observed a mean of 58%
slowdown in throughput (and up to 112%) on computational
tasks. We believe that with additional compiler optimizations
this overhead may be reduced significantly, yet some over-
head will always remain and must be accounted for when de-
signing a real-time application. We have used a sample real-
time benchmark with two workloads (one fairly light and
the other including background computational and allocation
noise from a non-real-time task). Response time results
on this particular benchmark favor slack-based scheduling,
and show that our implementation is representative of the
performance of commercial systems.
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